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Abstract:
We explain and explorethe connectionsamongthe following propositions: (1) thermal equilibrium is characterizedby the KMS condition,

(A,_~B)= (BA,); (2) finite-temperatureGreenfunctionsareperiodic in imaginarytime; (3) black holesarehot;and to anacceleratingobserver,
empty spaceis hot. The KMS condition of quantum statistical mechanicsis derived,with special attention to quantum field systems satisfying
relativisticcommutationrelationsand linearfield equations.We display theanalyticstructureof thetwo-point functionand showin what sensethe
KMS condition for suchsystemsis a statementof periodicity. Thenthe applicationof theseideasto horizonsin general-relativisticsettingsis
reviewed.Othermattersdiscussedinclude: the identificationof the analyticallycontinuedtwo-point function with the Greenfunction of an elliptic
(“Euclideanized”)operator;the analogousrelation betweena nonrelativisticpropagatorand a parabolicoperator;the constructionof thermal
two-point functions as image sums; the (in)significance of time ordering; simplifications of the KMS condition in the presenceof discrete
symmetries;theappearanceof a “double” Fock space(artificially in generalstatisticalmechanics,but naturally in space-timeswith horizons);and
complicationsassociatedwith the infrared behaviorof the “particle” spectrum.
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1. Introduction

This article is an explicationof thepropertyof “periodicity in imaginarytime” associatedwith states
offinite temperaturein quantummany-bodytheoryandfield theory,which in recentyearshasattracted
much attentionin connectionwith thermaleffects relatedto black holes and“acceleratedobservers”
[78].Sincewe dealprimarily with basicmathematicalissues,our article is complementaryto the review
of Sciamaet a!. [78](or the relevantchaptersof the book of Birrell and Davies [7]),which is more
concernedwith the physicalorigin and implicationsof the effects.

In nonrelativisticquantumstatisticalmechanics(many-bodytheory)it haslong beenknown[69,70]
that the Green functions, defined as finite-temperatureexpectationvalues of products of field
operators,possessanalytic continuationsin the time variable,whose boundaryvalues at t = 0 and
t = ±i/3arerelated(essentiallyequal).“This relationshipis crucial to all.. . Green’sfunctionanalysis”
[611.This principlehaspenetratedvarioussubculturesof physicsin different forms.On theonehand,a
generalizationof it to arbitrary observables[52]has become a central tool of rigorous quantum
statisticalmechanics[59,13], underthe title of “KMS condition”. On the other, it hasrecentlytaken
root in special-relativisticquantumfield theory (elementaryparticletheory) [14,5, 32, 90, 2, 73] andin
the general-relativisticquantumfield theorypreviouslymentioned[54, 49, 50, 35, 33, 34, 23, 80, 82].
The general-relativisticcontextis especiallynoteworthybecauseit providesa geometricalinterpretation
of theperiodicity,which in otherapplicationsarisesasa mathematicalfactwithoutmuchof anintuitive
rationale.

Another formal mathematicalproperty of thermal statesof field or many-bodysystems is the
appearanceof a “doubled” Fock spaceasthe naturalHubert-spacerepresentation[1, 86]. Amazingly,
this also hasa cleargeometricalorigin in thegeneral-relativisticsettings[88,60, 42, 65],which is closely
relatedto the analyticity considerations.

In a specialhistorical categoryare the papersof Hoegh-Krohnet al. [57,36] and Bisognanoand
Wichmann[8, 9], which provide— or shouldhaveprovided— bridgesbetweenthe literature of mathe-
maticalphysicsand that of generalrelativity. The relevanceof thework of BisognanoandWichmann,
particularly, to that of Unruh [88]et al. wasnot appreciateduntil very recently[80].(We should note
that Ojima [73] draws on both the mathematicaland the particle physics/statisticalmechanics
traditions.)

Mostof the recentwork on finite temperaturein relativistictheorieshastakenasa startingpointthe
well-developedliterature of nonrelativisticmany-bodytheory [e.g.,61]. The presentauthorsbecame
awareof a simple, direct derivationof the analyticandperiodicpropertiesof thermalGreenfunctions
in relativistic field theories,basedon thelocal commutativityof thefields in analogyto the treatmentof
vacuumn-pointfunctionsin axiomaticfield theory [e.g.,85]. In additionto simplifying thedevelopment
of the theory, this observationallows its conclusionsto be sharpenedandstrengthened.In particular,
nowherein theexistingliteraturehavewe seena clearaccountofwhat happensattheboundariesofthe
strips wherethe two-point function is analytic: In generalthereis abranchcut there(not just poles),
and the discontinuityacrossthe.cutis equal to the commutatorfunction ofthe quantumfield.

We foundotherminor inadequaciesin thephysicalliterature; for example,the role of time ordering
is usuallyquite unclear. On the other hand, the mathematicalliterature on the KMS condition is of
little help in understandingthe periodicity of the two-point function and its relation to the Green
functionof an operatoron a “Euclidean”space(that is, onewith positive definite metric). Indeed,the
standardformulationof the KMS conditionseemsto statethat a certainfunctionoftime is not periodic,
but rather“periodicwith a twist”:
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— (BA~� (A~B~.

The resolutionof this apparentinconsistencyis relatedto the presenceof the branchcut mentioned
above.

For thesereasonswe havepreparedthis expositoryarticle.
Section2 is a detailedstudy of the two-point function of a scalarfield with respectto statesof zero

temperature(vacuum)andof finite temperature.The field is “free” in the sensethat it satisfiesa linear
field equation, but the formalism is broad enough to include external gravitational and magnetic
potentials and various boundary conditions; in particular, the situations studied by the general
relativistsin connectionwith blackholesandacceleratingobserversarecovered.After a reviewof the
vacuum case, the two-point function correspondingto the grand canonical ensembleat vanishing
chemicalpotentialandat temperature1/13 for a field theory in a finite region is constructed.Its analytic
structureandi/3-periodicityare established,andalsoits connectionwith the Greenfunction of acertain
elliptic operatorsubject to periodic boundaryconditions. By taking a limit (“the thermodynamic
limit”), oneobtainsa function with thesesamepropertieswhich describes“finite temperature”for an
infinite system— for which the usual grand-canonical-ensembledensitymatrix doesnot exist. We also
discussthe “infraredproblem” of fields whosenormal-modefrequenciesdo not havea positive lower
bound;whetherthe thermal two-point functionsexist in sucha casedependson the system,in a way
linked to, but not determinedby, the spatial dimensionality.Finally, wediscussthe constructionof the
thermalfunction as an “image sum” of translatesof the vacuumfunction.

In section3 we turnto generalquantum-theoreticalsystemsandgeneralobservables,andderive the
standardKMS condition. Then we show that commutativity of two observables(for someinterval of
time separations)enablesoneto extendthe KMS function to an analytic,periodic function generalizing
the two-point function of section2. For two-point functionsthemselves,consequencesof symmetry
under chargeconjugationand time reversalare investigated.We close with somecommentson the
significanceof time ordering.

In section 4 we briefly review how finite-temperaturestatesarise when fields near geometrical
horizonsaredescribedin hyperboliccoordinates;this includesthe famouscasesof uniform acceleration
andof blackholes(the Schwarzschild—Kruskalmetric).TheAraki—Woods double-Fock-spaceconstruc-
tion (also known as “thermo-field dynamics” after Takahashi and Umezawa), which arises here
naturally, is discussed.Since all horizon models have the infrared problem— even if the field is
massive— we investigatethe existenceof the thermalstatescarefully.

Appendix A is devotedto the formulationof nonrelativisticquantumstatisticalmechanicswithin the
framework establishedi~ithe paper.

2. Relativistic “free” fields and elliptic Green functions

2.1. Definition of the physical system

We consider in detail a scalar field without self-interaction,in a geometricalsetting sufficiently
generalto encompassmany situationsof interest.

Let M be an n-dimensionalRiemannianmanifold. For notationalconvenience,pretendthat M can
be coveredby a single coordinatesystem,wherein the (positive definite) metric is given by
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ds2 = ~yjk(X)dx’ dxk (2.1)

(repeatedLatin indices summedfrom 1 to n), andlet

y~det(y)k). (2.2)

Define the scalarproduct

(~,~) ~(x)~ ~(x) y(x)h12 d~x. (2.3)

The correspondingHilbert spaceof square-integrablefunctionsis denotedby L2(M; y 5/2) [or, when
necessaryfor clarity, by L2(M; ~1/2 d~x)].

Let K be the second-orderdifferential operator(on scalarfunctions)

K= —y”(x) [V
1—iAJ(x)][Vk — iAk(X)] + V(x), (2.4)

whereV is the usual covariantderivative associatedwith the metric (2.1), 7jk is the corresponding
contravariantmetric, andA and V are real-valued.We assume:

K, supplementedby (fixed but usuallyunspecified)boundaryconditions
if necessary,is a self-adjointoperatoron the Hubert spacedeterminedby (2.3); (2.5)

The spectrumof K is nonnegative; (2.6)

Zero is not an eigenvalueof K (but maybe the lowest point of the
continuousspectrum). (2.7)

(To avoid technicalissueswe also assumethat the coefficient functionsin (2.4) are smooth,although

this is unnecessaryfor mostof our considerations.)Our field will satisfy

—ô
2~/cfl2=K4 (2.8)

alongwith canonicalcommutationrelations.
We haveparticularly in mind thesecases:
(1) M is a regionin R~,yjk(x) = 3~k’A.(x) = 0, V(x) = m2. Thenc~(t,x) is the special-relativisticfree

field of massm in (n + 1)-dimensionalspace-time.If M is a rectangle

—L
1<x’<L1 (0<L1�co), (2.9)

thena pair of boundaryconditionsmust be imposedfor eachL. which is finite. If all L. arefinite and
m = 0, thenpurely periodic or purely Neumannboundaryconditionswould violate (2.7),but Dirichlet
conditions,for instance,areacceptable.If at leastone L. is infinite, the spectrumis continuous.

(2) 41 R x M is a static (n + 1)-dimensionalspace-timewith metric g~df dx” (Greek indices
summedfrom 0 to n); (g00)~

1”~4çbsatisfiesthe covariantKlein—Gordon equationon 41. Then (2.8)
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holds with A.(x)=0,

Yjk(X) = —g00(x)
1gfk(x),

V(x) = g
00(x) i~z

2+ curvatureterms. (2.10)

[The covariantKlein—Gordonequation,

g~”V~V~~+(m2+ ~R)4 =0,

is equivalent(in a static 41) to

=

g
00[g~

112 gl/2gik~~~)+ (m2 + ~R) ~]. (2.11)

K is not of the form (2.4). However, the conformal transformation

(g~)~q~ (2.12)

convertstheequationto (2.8) with K definedby (2.4) and(2.10). The metric yin (2.10) hascometo be
called the “optical metric”, becauseits geodesicsarethepathsof photons(the spatialprojectionsof the
null geodesicsof 41).]

External electrostaticpotentials(A
0 � 0) andexternalgravitationalfields which are stationarybut

not static (g01� 0) arenot coveredin this framework;theyarebesthandledby passingto a first-order,
two-componentformalism for the scalarfield [e.g., 62].

2.2. Thefield operatorand the vacuumstate

Herewe review the standardquantizationof the scalarfield satisfying (2.8) [e.g., 11, 41, 43] and
showhow its two-point function is relatedby analyticcontinuationto the Greenfunction of the elliptic
operator

—a
2Ic?s2+K (2.13)

on the manifold R X M. We treat 4. as a chargedfield; the neutral (Hermitian) caseis similar but
simpler.

We shall assumetemporarily that K haspurely discretespectrum;in this subsection(in contrastto
the next) this is little morethana notationalconvenience.Accordingly, let ~i~(x)(i.’ = 1, 2, . . .) be the
normalizedeigenfunctions:

K~fi~=w~ç, (~i~,ç/i~)i, (2.14)

inf(w,,) >0. Then the quantizedfield is

~(t, x) = ~ ~~(x)(2w~)”2[exp(—iw~t)a~+ exp(iw~t)b~], (2.15)
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wherea,, annihilatesa quantum,be,, createsan antiquantum,and [a,,,a~]= 3,~,,,etc. [Seealso remark
containing(3.17).] If

(2.16)

one has

[~(t2,x), 4.(t1, y)]=0,

[~(t2, x), ~t(t1, y)] = [~(t, x), ~t(0, y)] = ~ ~,,(x)~(y)* (2w,,)
1 (exp(—iw,,t)— exp(iw,,t)),

(2.17)

[4(t
2, x), c~t(t1,y)] = 0 if (ta, x) and (t1, y) havespacelikeseparation. (2.18)

(It is not obvious that (2.18) follows from (2.17); rather, (2.18) is a consequenceof the canonical
commutationrelationsand the finite propagationspeedof the hyperbolic equation(2.8) [e.g., 29].)

The field operator (2.15) is an operator-valued distribution acting on a Fock spacegenerated by a
vacuumvector, 0), annihilatedby all the a,, andb,,. Sincethe field equationis linear, the vacuumstate
is completelycharacterizedby its (Wightman) two-point function,

G(t, x, y)ns(0l~(t2,x) ~
t(t

1, y)I0)

= (0I~(t,x)~t(0, y)IO) = ~ ~(y)* (2w,,~’exp(—iw,,t). (2.19)

[We have (0l~(t2,x) 4(t1, y)~0)= 0 and the same for 4~.Also, (OI~t(t,x) ~(0, y)I0) equals
(014(— t, x) ~t(o y)~0)*; this expressesinvariance under combined charge conjugation and time
reversal(seesection3.3).] It is convenientto definealso

G~(t,x, y) (OI~t(t1,y) ~(t2, x)I0) = ~ ~,,(x)~,,(y)* (2w,,)
1exp(+iw,,t). (2.20)

Note that the commutator(2.17)equalsG — G°’i.Thesuperscript“ce” indicatesthat thevacuumstate
haszero temperature,hencereciprocaltemperature/3 = lIT =

Now we introducea complexvariable

z=t+is, (2.21)

t ands real, andinvestigatethe analyticcontinuationsof G~.off the real z axis. By virtue of the extra
exponentialdecay of the summandin the respectiveregion, (2.19) with t replaced by z defines a
holomorphicfunction in the lower half plane,and(2.20) definesa holomorphicfunction in the upper
half plane. The distributions G~”+ are the boundaryvalues of thesefunctions as the real axis is
approachedfrom their respectivedirections.

Remark: The assertedexponential decay follows from the fact that the spectral function

EA(x, y) = ~ ~/i,,(x)~/,,,(x)* (2.22)
w~<A
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is polynomiallyboundedas A—* ce~Indeed,underourassumptionson M andK it is known[44, 46, 58]
that E5 (x, y) is of order A” (not only for an operatorwith discretespectrumbut also in the caseof
continuous spectrum, which we consider later). For many solvable models (such as when M is a
rectangleandK is the Laplacian)this fact is well knownandeasilyverified. It maybe helpful to sketch
a few stepsof the proof in the general case:First, one shows that the spectralprojection E5 hasa
continuouskernel, E5(x, y). Invoking the Schwarzinequality for the sesquilinearform (f, E5g), one
then infers

E5(x, y)1
2 EA(x, x) EA(y, y).

Thus one needsonly considerEA(x, x), whoseLaplace transform

f exp(—A2t) dE
5(x,

is knownto go like c1t”’
2 for t ~ 0. (This is the first term of the well-known heat-kernelexpansion.)

The KaramataTauberiantheorem[91, section5.4] thenyields EA(x,x) — c
2A” for A—* ce~

If x � y, then the separationof (t2, x) and (t1, y) will be spacelikefor sufficiently small tin (2.16)
(namely, t lessthand(x, y), the distancebe1weenx andy in the metric Yjk). Thus (2.18) implies that

G(z, x, y) = G~(z,x, y)

for z on a certain interval (— d < t < d) of the real axis. By the one-dimensionaledge-of-the-wedge
theorem[85, section2.5], therefore,eachof thesefunctionsis an analyticcontinuation of the other.
That is, for fixed, unequalx andy thereis a single holomorphic function, ~ (z, x, y), definedon a
connectedregion of the complexplane(seefig. 1), such that

fG°°+(z,x,y) if Imz<0,
~ (z x y)=~ = . (2.23)

IG(z,x,y) if Imz>0,

andboth equalitieshold if Im z = 0 and Rezl <d. In generaltherewill be branchcutsalong the real
axis from z = ±dto z = ±~.

Now consider the values of ~(z, x, y) on the imaginary axis. If z = is, then from (2.23) and
(2.19—20) we have

G(s,x, y) ~(is, x,y) = ~(x) q,~(y)*(2w~)~exp(—w~~s~). (2.24)

Thus, we can also write

G(s, x, y) = (2w’ ~ J dk0 ~i~(x)exp(ik0s2) ~~(y)* exp(—ik0s1) (k~ + (2.25)

wheres1 and~2 are real numberssuchthat s2 — s1 = s. G is often called the “(two-point) Schwinger
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Fig. 1.

function” of the scalarfield 4. It is clear from (2.25) [recallthe normalization(2.14), (2.3)] that G~’is
the integral kernel of the inverse of (2.13) (viewed as an operator on L2(R x M; y”2 dsd~x)).
Equivalently,G maybecharacterizedas theGreenfunction of (2.13),actingon R x M. Thatis, G°‘ is
the uniquesolutionto

(—82/~s~+K(X))G=ô(s
2—sl)5(x—y)y(y)

112 (2.26)

which decaysas Is I —~ ce~

Consequently,if one startsfrom the Greenfunction G~(s,x, y) of the elliptic or “Euclideanized”
problem,then by analyticcontinuationin s one can reacheither of the space-timeWightman functions
G (t, x, y) and G~(t, x, y) — which are solutions of the relatedhomogeneous,hyperbolic equation

(+o2Iot~+K(X))G~+ =0. (2.27)

Fromfig. 1, reoriented,oneseesthat G~is obtainedby approachingthe imaginarys axis from the left,
G by approachingfrom the right.

Note that up to now we have said nothing about time ordering. The time-ordered(Feynman)
two-point function is

G(t, x, y) (0I~T[~(t
2, x) Øt(t~,y)]~0)= { ~:~:~ ~ ~ (2.28)
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.] denotesthe productof field operatorsorderedwith time argumentsincreasingto the left. G~
can beobtainedfrom G by a rigid rotationof the domainfrom the s axis to the t axis in the direction
indicatedby the curvedarrowsin fig. 1:

G(t, x, y) G(—it,x, y) = ~ ~~(x)~j~(y)*(2w~)’exp(—iw~~t~). (2.29)

It is only in this sensethat G hasanycloserrelationshipthanthe otherMinkowski two-point functions
to the EuclideanGreenfunction, G.

If K possessessomecontinuousspectrum,then the sums over i’m the precedingare replacedby
Stieltjes integralswith respectto a spectral function EA generalizing(2.22) [45]. The only essential
complicationariseswhen zero is a limit point of the spectrum,as is expresslyallowed by (2.7).

We shall nowillustrate this andthe precedingdevelopmentsby consideringthe free scalarfield in flat
space-times.First look at Minkowski space, Rd ~ and K —V2 + m2 acting in R~.Then the
Schwingerfunction (2.24) becomes

x, y) = S~~
1([s

2+ (x — y)21’~ m~)‘ (2.30)

Sd(r; m2) (2~)~J ddkexp(ik x) (k2 + m2)1. (2.31)

[In (2.30), xER~in (2.31), XERd and rns~x~.]For fixed x�y, one can readoff the behaviorof
x, y) on the cutsfrom this. Recallthat for m>0 andd even,Sd is a combinationof powersand

modifiedBesselfunctions,andfor d odd it is acombinationof exponentialsandpowers;in particular,
S

3(r; m
2) is a multiple of the Yukawa potential, r1 exp(—mr). Thus the only singularitieson the

Riemannsurfaceof ~ arethe pointsz = ± x — y ~and theseare either infinite- or first-orderbranch
points. Also,

Sd(r; 0) r~2 if d >2,

so thatone getssquare-rootbranchpoints for m= 0 when n is even. However,whenn = 3, 5, 7,...,
thereis only one sheet,since the two singularitiesreduceto poles. Note that this is equivalentto the
commutator’svanishingin the timelike region (Huygens’sprinciple).

For m = 0 andd = 2 (or d = 1) one has a nonintegrablesingularity at the origin in (2.31). The
implicationsof thisfor two-dimensionalquantumfield theory havebeendiscussedin [77,92 (section4),
31]. The divergencereflects the fact that “1/k2” defines a distribution only on test functionswhose
support(in k-space)doesnot includetheorigin. Thereareinfinitely manyways to extendit to arbitrary
test functions.Theseextensionscorrespondpreciselyto the variouschoicesof a fundamentalsolution
for the Laplacianin dimension2. Recallthat for d >2 the fundamentalsolution is uniquelydetermined
by requiring that it decay at ce, but for d ~ 2 no such solutionsexist. Onemay take, e.g.,

1 /r\
S

2(r;0)ns— ~—ln~) (2.32)

for an arbitrary lengthR, but no choiceof R producesdecay.More to the point for field theory, no
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choiceof R gives S2 the positivity propertynecessaryfor reconstructionof field operators,in a Hilbert
spacewith positive definite metric, definedon all smoothtest functions.

There is a spectrumof attitudesone may take toward this situation. Conservative:An infrared
divergencein the formal expressionfor the two-point function indicatesthat no quantumfield theory
exists; the model is inconsistent.Radical: The statespaceof sucha systemhasanindefinite metric,and
onemust learnhow to makephysicalsenseof suchasituation.Liberal: A quantumfield theoryexists,
in a genuineHilbert space,but the field operatorsarenot definedfor all testfunctions.Weadopt the
liberal point of view. Within that framework there are two policies one could adopt toward the
two-point function: (1) No two-point function existsfor sucha theory. (2) As two-point functionone
may chooseany “regularization”(i.e., ananalogueof (2.32) for themodel in question),remembering
that its value on the illicit testfunctions is irrelevantto physics.The choice between(1) and (2) is
perhapsa matterof tasteand semantics;we shall adopt the former, becauseit relievesus of any
obligation to discuss technical issuesconnectedwith regularizations,and because“the two-point
function doesnot exist” is aconvenientway to refer to the infraredpathology in passing.

Theexamplesjust discussedshow that thepresenceofzeroin thecontinuousspectrumis a necessary
but not sufficient condition for the infrared pathology. To explore this subject further, let us now
consider the rectangles(2.9) with m= 0. Suppose that L1 = ce for j = 1,. . . , J and L. <ce for
j=L+1,. . . ,n. Then (2.25) becomes(withx°nss2,y°nss1)

G~(s, x, y) (2~)~1) f dk0~f dk1 ~ . . . ~ ~ (2L~’
—~ k1.,.5 k,, j=J+i

x exp(i~k,xi)exp(_i~k1y1)(~k~), (2.33a)

wherethe precisespectraof the discretevariablesk~+ ~ . . , k,, dependon boundaryconditions. Each
of thesewill takeon the valuek1 =0 if the correspondingboundaryconditionsare of the periodic or
Neumanntype. Therefore,the integral(2.33a)will be infrared-divergentin thosecases(even afterthe
implicit smearingwith smoothtest functions,whichhandlesanyproblemat the ultraviolet end) if and
only if J = 1. (ThecaseJ = 0 hasbeenruled out by (2.7).) The sameobservationappliesto

G~(s,x, y) (2~~J dk1 ... f dk1 ~ . . . ~ ~ (2L1)~
—~ k1.,.1 k,, j=J+1

n n —1/2 n —1/2

xexp[i~kj(x’_y’)] ~(~k~) exp[_(~k~) sI]~ (2.33b)

correspondingto (2.24), and to the correspondingformulas (2.19—20) for G~. So the two-point
function fails to exist, in either thephysicalor the Euclideandomain, for the masslessscalarfield in
two-dimensionalMinkowski space(J = n = 1), as alreadymentioned,or in aninfinite cylinder of square
cross section in four-dimensionalMinkowski space (J = 1, n = 3) with boundaryconditionsof the
indicatedtypes, etc.

In general, infrared convergenceis governedby the behavior as A .~ 0 of the spectralfunction,
EA(x, y). In concretecaseswhich can be solved by separationof variables,this can be investigated
ratherdirectly (seesection4.3).



146 S.A.Fulling and S.N.M. Ruijsenaars,Temperature,periodicity and horizons

Remark:The crux of the infrared-convergenceissue is the following [cf. 40 (p. 247), 62, 43]: The
two-point function will exist, as a distribution in (x, y) with t fixed, if andonly if the field operatoris
definedas a distributionin x on test functionsin the correspondingspace,say C~°(M).From the field
expansion(2.15) generalizedto continuousspectrum,one seesthat f(x) is an acceptabletest function
for 4 if andonly if the spectraltransform

—1/2 —1/2 1 * 1/2 nw f(w)nsw j i/i,,,(x) f(x)y(x) dx (2.34)
M

is an acceptabletest function for thecanonicalannihilationand creationoperators,a(,~)andb(,~). But
in the Fock representationthose operators are defined precisely for functions ,~(w)which are
square-integrable.Thus one needsf to be in the domainof K”4 as an operatorin the Hilbert space
L2(M; ~li2)• Infrared divergence occurs when not all functions in C~(M)belong to dom(K”4).
Elementarypower countingshowsthat this criterion is consistentwith our conclusionsabove for the
masslessfree field in rectangularregions.Comparing(2.34) with (2.24)or (2.19—20),oneseeshow this
connectionwill extendto the generalcase;we returnto this in a remark in section2.4.

2.3. Thermal states “in a box”

Thethermalequilibrium stateof temperatureT correspondingto a time-independentHamiltonianH
is customarilydefinedby the Gibbs formula

(A)~=Tr(e’A)/Tr(e’~’) (2.35)

for the expectationof an observableA, where

13=1/T. (2.36)

(We adopt units where Boltzmann’s and Planck’s constantsare equal to unity.) However, for the
numeratoranddenominatorin (2.35) to be separatelydefined,it is essentialthate~ be an operatorof
traceclass.That is, H must havepurely point spectrum{E,,}, andthe convergencecondition

Z Tr(e~”)= E e~ <°~ (2.37)

must be satisfied.Thermal statesfor more generalsystemsmaybe definableas limits of the statesof
form (2.35) of approximatingsystemswith finite Z.

For the relativistic systemwith equation of motion (2.8), the Hamiltonian H is the second-
quantizationof K”2. It is well known[e.g., 44, 24, 58] that if Mis compact(with or without boundary),
thenthe differentialoperatorK (2.4) hasa discretespectrumandthe numberof eigenvalueslessthan
or equalto A2 asymptoticallyapproachesa constanttimesA”; thusthetracecondition(2.37) is satisfied,
as shown below.

Remark: If M is not compact, then (2.37) may diverge even if the spectrum is discrete. If
K = —V2 + V(x) on R~with V(x)—+ +°~as IxI —p ce, then[75, 24] the numberof eigenvalueslessthanA2
is asymptotic to
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2 n/2 nconst. j [A — V(x)] d x. (2.38)

V(x)<A
2

If V(x) approaches sufficiently slowly, then (2.38) grows arbitrarily rapidly — hencepossibly faster
thanexponentially, so that (2.37) diverges. (On the other hand, the local spectralfunction (2.22)
satisfiesa polynomialbound,undervery generalconditionson V, so (2.43) and(2.50)will convergefor
such systems.This qualitativedifferencebetweenthe local andglobal spectralasymptoticsis explained
by the observation that normalized eigenfunctionsof large eigenvaluew~will typically be small
everywhereexceptnearthe “turning manifold” V(x) w~,which recedesto infinity asw~increases.)

Accordingly, in the generalcaseone startsby “cutting off” M by inserting a boundary,dA, whose
interior A is compact.At the end (see section 2.4) one investigatesthe limit of (2.35) for a nested
sequenceof such “boxes” A whose union is all of M. Caremust be takento ensurethat the cut-off
systemssatisfy (2.5—7). This can be done for many models by imposing the Dirichiet boundary
condition on oA — ~ M.

We now define thermaltwo-point functionsby inserting the productof two fields into the formula
(2.35) in the role of A:

G~(t,x, y) Z’ Tr[e~”4(t
2, x) ~t(t,, y)]

Z’ Tr[e’~’ 4(t, x) ~t(0, y)] (2.39)

(where t t2 — t1 as always), and similarly

Gf~(t,x, y) Z~Tr[e~~*I 4,t(o y) ~(t, x)]. (2.40)

For our field-in-a-box these quantitiesexist in the Fock representationand can be evaluatedfrom
(2.15): From (2.37),

~ ~
Pi1,fl5, . . . =0 v=1

=0

(wheren,, andii,, arethe numbersof quantaand antiquantain mode ii)

= III [~exp(_$n~w~)] = fl (1— exp(—f3w~))
2

= exp[_2 ~ ln(1 — exp(_/3w
5))] [det(1— exp(—/3K

1’2)]2.

The seriesis convergent,sinceK was constructedso that w~>0 and ~ exp(—f3w,.)< ce~Thus

Z1 = fl (1 — exp(—/3w,,))2 (2.41)

for a chargedfield. For a neutralfield the exponent2 is absent.Also,
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~ ~ exp[_~~ (n~+~)w~]n~
alln,ñ

= (1— exp(—/3w~)) n~On~exp(—/3n~w~)= —(1—exp(—$w~)) ~ ~ exp(—/3nw~),

whence

(a~a~)~=exp(—/3w~)(1—exp(—/3w~))’, (2.42a)

(a~a)~= 1 + ~ = (1— exp(—/3w~))~ . (2.42b)

Identical equations hold for b~.The other combinations, (aa~),,,,~ (a~b~)~,etc., are zero.
Thus, finally,

G~(t,x, ~ = ~(x) q,(y)* (2w~)’[exp(—iw~t)(a~a)~+ exp(iw,.t)(bb~)~],

with a similar formula for G; hence

G~(t,x, y) = ~ ~~(x)~(y)* (2w~)1(1—

x [exp(~iw~t)+ exp(±iw~t)exp(—w~/3)]. (2.43)

As a check, note that

G~(t,x, y) — G~(t,x, y) = [q~(t,x), ~ y)] (2.44)

is consistentwith (2.17).

Now let us set z t + is. Since the factor
q~(z) nsexp(—iw~z) + exp(iw~(z + i/3)) (2.45)

decreases exponentially with tu,, if (and only if) —/3 <s <0, (2.43)~with t replaced by z definesa
holomorphicfunction

G’~(z,x,y) for —f3<Imz<0. (2.46a)

Similarly, (2.43) yields a holomorphicextension

G~(z,x,y) for 0<Imz<f3 (2.46b)

correspondingto the function

q(z) exp(iw~z)+ exp(—iw~(z— i/3)). (2.47)
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When x~ y, for exactly the samereasonas in the zero-temperaturecase,G~ and G~ are analytic
continuationsof eachotherthrougha window in the realaxis as in fig. 1. Furthermore,from (2.45)and
(2.47) one has

q~(z— iJ3) = q_(z), (2.48)

which meansthat the function in the upperstrip, (2.46b), is an exact copy of that in the lower strip,
(2.46a).Therefore,the processof analyticcontinuationcanbe repreatedindefinitely in both directions.
The result is a function ~ x, y) which is holomorphicin the z planeexceptfor horizontalbranch
cutsfrom Rez = ±d(x,y) to Re z = ±ceatIm z = N$ (N = 0, ±1,.. .); seefig. 2. Thefunctionsatisfies
theperiodicity condition

+ iNf3, x, y) = ~(z, x, y) for all integersN. (2.49)

[If z is on oneof thecuts, onemustdistinguishthe limiting valuesof ~ from aboveandbelow thecut.
Equation(2.49) is still valid for theseboundaryvalues,but to interpretit correctlyonemust remember
thenecessityof “jumping over” a cut. See also section3.3.]

The analogueof (2.24) is

G1’(s, x, y)ns~‘(is, x, y)

= ~(x) ~,
5(y)* (2w,,)~(1— exp(—/3w,,))’ [exp(—w,,s)+ exp(+w,,(s—/3))]

if0<s<f3. (2.50a)

S

G

8

I —

G~ —d d t

I I- -

+ +

—6

Fig. 2.
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[Replacings by sI in the final bracket, one gets an expression valid for —/3 <s </3; see (2.43). Thus
G~is even in s, just as in the T = 0 case. Note that its periodicity (2.49) then implies that it is also

symmetric with respect to reflection at the lines Im z = (N + ~)/3.] We claim thatG~is the solutionof
(2.26) which satisfies G’3(s + /3, x, y) = G~(s,x, y); that is, G~is the Greenfunction for the elliptic
operator(2.13) acting on a “cylinder” S1 x A of circumference/3! The eigenfunction expansion of that
Greenfunction, parallel to (2.25), is (for 0 < s

2 — s1 </3)

G~(s,x,y)=/3~~ ~ ~
~ n=—= /3

(2.50b)

So the proof of the claim reducesto the verification of

~ [(2~n)
2 + ~2] exp(2~ins//3) = /3(2w)~(1 — e~)’ [e~ + e~~] for 0<s<13.

(2.51)

The coefficientsof this Fourier seriescan be verified by an elementaryintegration.
As in (2.28—29), a time-orderedthermal two-point function can be defined,which satisfies

G~(t,x,y) = G~(—it, x, y) ; (2.52)

that is, the real axis is approached from above if t < 0 and from below if t> 0. Note that it may be
written

G~(t,x, y) = G~(t,x, y) + 6(t) [q5(t,x), ~(0, y)j. (2.53)

Hence, it satisfiesthe inhomogeneouswaveequation

[a2I~t2 + K(
1)]G = —i6(t) ~(x — y) y(y)”

2. (2.54)

2.4. Thermalstates in the wholespace

We now consider taking the box, ~A, away to infinity. It is natural to expect— although not
obvious — that G‘~ for S1 x A will converge(as a distribution) to the correspondingGreenfunction on
S1 x M. [Thiswould show,in particular,that the limit is independentof the shapesof the boxesin the
particular sequence of boxes chosen.Similarly, one expectsthe same limiting result if the Dirichlet
condition on oA is replacedby any conditionmaintainingself-adjointnessandpositivity.] For theGreen
function on ~1 X M formulas (2.50) still apply, if the sum is replaced by the appropriateStieltjes
integral; the correspondinggeneralizationsof formulas (2.43) remain meaningful; and the argument
leading from (2.43) and (2.44) to (2.50) can be reversed.Thus G~on S’ X M has an analytic
continuationto two-pointfunctionsG~(and G~)on the space-timeR x M, whichcan beusedto define
the thermalequilibrium statefor temperature1/13, andthe masteranalyticfunction ~ for that system
will exhibit the periodicity (2.49).

This state,asa functionalon the fields, is not realizedas a densitymatrix in the Fock representation
(unless exp(—f3H) was already a trace-classoperatorbefore the cutoff was introduced). It can be
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realizedas avectorstatein someotherrepresentationby a constructionof theWightmantype[e.g.,85,
chapter3]. (Usually in the literature the smearedfields are exponentiatedto form boundedWeyl
operators[cf. 1] andthe GNS (Gel’fand—Naimark—Segal)constructionis applied(see,e.g.,[59]andthe
articles by B. Simon and P.J.M. Bongaartsin the samebook).) This constructioncan be carriedout
evenif exp(— /3H) is of traceclass,as whenM is compact.In that casethethermalstateis realizedboth
asa vectorstatein the (reducible)GNSrepresentationandasa density-matrixstatein the (irreducible)
Fock representation.

If the spectrumof K (andhenceK~)extendsdown to 0, the integralscorrespondingto (2.43) and
(2.50) mayor may not be infrared-convergent,as we shall demonstratepresently.In anyevent, the
argumentwehavejust given breaksdown in thatcase.It may be possibleto obtain its conclusion— in
the caseswhereG‘~is defined— by direct analysis of the mode of convergence of the spectral functions
asthecutoff is removed,but we havenot attemptedto do so. Instead,we shall investigatethe formulas
(2.43)and (2.50) directly, in variouscasesof interest. The most interestingcasesarethoseassociated
with cosmologicalhorizons(including thoseresultingfrom acceleration);they are treatedin section4.
Herewe take a look at the simpler casesof the masslessscalarfield in flat rectangles,whosevacuum
stateswere describedat the endof section2.2.

First considerthe casewhere M is all of R” and K = —V2 + m2. Then [thecontinuumanalogueof]
(2.50b)can be written

G~(s, x, y) = (2~”/3’ ~ exp(2~ijs//3)f d~kexp{ik (x — y)} [(2~1)2 + k2 + m2] (2.55)

The right-handside can just as well be regardedas the T= 0 Schwingerfunction for M = S1 x R~1,
whereS’ hascircumference/3; we return to this observationshortly. Onemayalsowrite

G~(s,x,y) /3i~ exp(2~ijsI/3)S~(Ix_yI;(2;J)2 + m2). (2.56)

For m= 0, (2.56) exhibits the fact that the Green function is not definedunambiguouslyfor n = 1 or 2
and that this is due solelyto the constantmodewith respectto s; cf. (2.32),etc. Correspondingly,the
continuousanaloguesof (2.43) and(2.50) areinfrared-divergentfor n = 1, 2.

For the more general rectangles,G~ is given by a formula like (2.33a), exceptthat k
0 is now a

discretevariable takingon the values

2~n//3 (n=0,±1,...)

asin (2.50b).The argumentfollowing (2.33a)thereforeshowsthat in the thermalcaseonehasinfrared
divergencewheneverJ, the number of “continuous” dimensions,is equal to either 1 or 2. [From
(2.50a),the integrandof the analogueof (2.33b) involves a factor

— e~y’ f3~k
2 as k ~, 0, (2.57)

where

kns(~ k~)
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is the radial coordinatein the continuouspart of the wave-vectorspace.This alsoshowsthat J � 3 is
neededfor convergence.]Thus there are no finite-temperatureequilibrium two-point functions(with
vanishingchemical potential) for the masslessfree field in three-dimensional(or two-dimensional)
Minkowski space-time,nor for the four-dimensionalmasslessfield in an infinite slab with Neumann
conditionson its parallelplanefaces,etc.We emphasizethat the problemwith the thermalstatesof the
masslessfield in space-timedimensions3 and2 is of preciselythe samenatureas the pathology of the
vacuumstateof the masslessfield in dimension2, which is by now well understood.In general, the
infraredbehaviorof a theoryat finite temperatureis analogousto thezero-temperaturesituationin one
lower dimension[66; 26 and referencestherein.]

Remark:Oneformulationof the criterion for existenceof thermaltwo-point functionsis: TheC~test
functionsmustbelong to the domain of the operator K”2. (For the vacuumstate,the test functions
need only belong to dom(K1’4), asremarkedat the endof section2.2.) Infraredconvergence,in each
of various contexts, requiresthat the test functionsbelongto the quadratic-formdomain of a certain
operatorR(K); such formulas as (2.19), (2.24—25), (2.43), (2.50), whensmearedwith test functions,
are the spectral representationsof these quadraticforms. We have R(w) — w~ for /3 = ~ and
R(w) ~ -2 for finite /3. Since multiplication by co2 is the spectralrepresentationof K, thismeansthat
the crucialspaceis the form domainof K1’2 for /3 = ~ and the form domain of K’ for finite /3. The
extra squareroot comesin in passingfrom quadratic-formdomainsto operatordomains.

Finally, we havenotedabovethat the elliptic Greenfunction (2.55) correspondingto a free field in
R” attemperature11/3 is the same,up to a relabelingof axes,as that correspondingto the vacuum state
of the field when one of the spatial dimensionsis periodic with circumference/3 [e.g., L~= /3/2 in
(2.9)]. This observationextendsto interacting fields ([57]; cf. “Nelson’s symmetry” [83, chapter 6]).
Presumablyrelatedis the fact that the formulafor the energydensityof black-bodyradiationof fields of
variousspins is essentiallythe sameas the formula for the “Casimir” energydensityin spatially finite
universes[84, 38, 16, 17]. Cf. remarksof Candelasand Dowker [181.

2.5. Imagesums

The representation

x, y) = ~ ~(z + iN/3, x, y) (2.58)

hasbeenexploitedin muchof the literature[e.g., 14, 34, 6]. It arisesin the first instancefrom the idea
that the elliptic Green-functionequation(2.26) with periodic boundaryconditions in s should be
solvable by summing the contributions of “image charges” at s = N/3 in the “unrolled” manifold R x M:

G~(s,x, y) = N=-= G(s + N/3, x, y). (2.59)

Doesthe series(2.59) converge?If K is the Laplacianon R2, then G~’is the Greenfunction of the
Laplacianon R3, betterknownasthe Coulombpotential.The termsin (2.59) thereforedecreaseonly as

I N1’, and the sum diverges. Note, however,that for this casewe already determined that no thermal
two-pointfunction exists. (A classicalGreenfunction on thecylinder doesexist [cf. (2.32)andfollowing
discussion],but it doesnot havethe positivity propertyneededfor the Wightmanreconstruction,andit
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cannot be constructedas an image sum. Are thesetwo propertieslinked in general?)If K is the
Laplacian on R’, J>2, then G~(s, x, y) decreaseslike r’’ [r (Ix — y~2+ s2)”2], and the sum
converges.We haveconvergencealsofor themassivefree field in any R”, sinceG°°thenis dampedby a
factorexp(—mr); this can be generalizedto mostoperatorsof the form (2.4) on R” that possessstrictly
positive spectrum[51].

A systematicstudy is more easilycarriedout in the spectralrepresentation.We can write

~(z,x, y) =JdE~(x,y) ~(z, w) (/3�ce), (2.60)

where

f G(z, w) = (2w)’ e~ for s <0,

~ (z, w) = ~ G~(z,tu) = (2w)’ ~ for s >0, (2.61)
and ~‘~(z,w) for finite /3 is a periodic function of period i$, determinedby either of the equations

~(z,w) = G~(z,oi) = (2w)’ (1 — e~°’)’(e~+ e~e~’) for —/3< s <0, (2.62a)

W~(z,tu) = G~(z,w) = (2w)’ (1 — e°’)~(ei~~z+ e~ze~’°) for 0< s</3. (2.62b)

[See(2.23), (2.19—20), (2.46), (2.43). The spectral function EA(x, y) is given by (2.22) when the
spectrumis discrete,andit canbeconstructedmoreor lessexplicitly wheneverthe field equationcanbe
solvedby separationof variables.]

From (2.61) and (2.62b)we obtain for 0<Im z </3

N=-~ ~(z + iN/3, w) = (2wy1[e’0~ ~ ~ + e’~~ eM~]

= (2w)’[e’~(1 — ew)~+ e~5ze~(1— e~)1] = ~(z, w).

Since the extrememembersof this equationare periodic,we have

‘~(z,w) = ~°‘(z + iN/3, tu) (2.63)

(absolutely)for all z with Im z not an integralmultiple of /3. Across the lines Im z = N/3, ~“(z, cv) is
discontinuous,with jump equalto the spectraltransformof the commutator(2.17),

—iw~sin tut. (2.64)

To establish(2.58) it is necessaryto justify an interchangeof the integration-summationover cv in
(2.60)with the summationover N in the integrand,(2.63). We restrictattentionto Im z ~ N/3, so that
the cv integrationsthemselveswill convergein a classical(not merelydistributional) sense.In view of
thepolynomialboundon thespectralfunction,we haveno problemattheultraviolet end,hence(2.58)
is certainly true whenthe spectrumof K is strictly positive. When the spectrumextendsdown to 0, we
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haveseenin section2.4 that thereare caseswhere(2.60) for /3 <ce is divergent, hencethe left-hand
sideof (2.58) is undefined,althougheverytermon the right-handsideis defined,since(2.60) for /3 =

is convergent.Let us consider the contrary case: ~ exists and the infrared part of its spectral
representation,

A
1 —1 —~ —1 ~ ~ —~j dE,,,(x,y)(2cv) (1—e ) (e +e e ),

0

converges.(Here A is an arbitrarypositive number,andwe take 0< s < /3.) The factorse~”~arenot
responsiblefor thisconvergence,so the infrared convergencein (2.60) is absoluteand(2.58) follows. It
is not clearwhetherthe converseholds: Doesconvergenceof the right-handsideof (2.58) guarantee
that ‘~ existsin the sensediscussedin section2.4?

The representation(2.58) enablesoneto readoff the analyticstructureof ~ from that of ~°°; note
that this leadsagainto fig. 2. The flat caseconsideredbefore illustratesthe fact that the Riemann
surfaceof ~ has infinitely many sheetswhenever~ hasmorethanone sheet.

Onemayreformulate (2.58). as

G~(t,x,~ N=-= G~(t+iN$,x,y),

wherethe * standsfor F, + or —‘ but suchequationsaresureto be misleadingto onewho is not fully
awareof the analytic continuations,branchcuts, and distributionallimits implicitly involved.

Remark:The rightmost member of (2.62a) or (2.62b) defines an entire function, which is not.
periodic.The valuesof eachsuchfunctionoutsideits properstrip are irrelevant;its spectraltransform
maynot evenconvergeoutsidethat strip. A moreelementaryexampleof this phenomenonis provided
by the function

[cosh(x+2lTz/f3)]1

which is clearly i/3-periodic in z. For lIm zI< /3/4, its Fourier transformis unambiguous,and givenby

e’2~”~’~
cosh lTp/2

but the analytic continuationto arbitraryz of the latter function is not periodic in z.

3. General quantum statistical systems:The KMS condition

3.1. Derivation andsignificanceof the KMS condition

Consideran arbitrary quantum-mechanicalsystemwith time-independentHamiltonian H. If A is an
observable,its time evolutionin the Heisenbergpictureis

A, = e”A e~tH. (3.1)
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If e~”(for some/3>0) is of trace class, one can define the equilibrium state of temperature
T= 1//3:

(A)4 Z
1 Tr(e~”A), (3.2)

ZanTre~H. (3.3)

In manipulating expressionsof form (3.2), one makes extensive use of the facts that Tr(0
102) =

Tr(020,) and that anytwo functionsof H alonecommute.
For two observables,A and B, we define

Guui

A B~’AB~
~ )~\ t 1/3

= Z
1 Tr[e41’ e”11A e~”~’B]

= Z1 Tr[e411A e°’1Be°’~’]= (AB,),
8 . (3.4)

In fact, for any t1 and t2 suchthat t2 — t1 = t we have

= G
4÷(t,A, B). (3.5)

Similarly, we define

G~(t,A, B) = (BA,)
4

= Z
1 Tr[e41~Be°’~’A~

= (B...,A)
4 = (B~A,,)P if t2 — t1 = t ; (3.6)

thus

G~(t,A, B) = G~(—t,B, A). (3.7)

Remark: If A or B is unbounded,the foregoingexpressionsmaynot be well defined. In particular,
e

41’A is no longerof trace classin general. (For example,A could be e~411.)Therefore,in general
discussionsone usually assumesA and B to be bounded operators.Nevertheless,the formalism is
applicableto thermal two-point functionsin a box, in spite of the fact that the field operatorsare
unbounded.This hingeson the fact that operatorslike e411aa,,are of trace class, as we haveseen
explicitly in section2.3.

Equations(3.4) and (3.6) can be rewritten as

G4÷(z,A, B) = Z1 Tr[e~~’8~’1A e” B] , (3.8a)

G~(z,A, B) = Z1 Tr[B eiZ~~~Ae~~14~’1].. (3.8b)

Now z can be interpretedas a complex variable. If z = t + is, thenboth exponentsin (3.8a) have
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negativereal partsif —/3 <s <0; for (3.8b), the conditionis 0< s < /3. Therefore,thesetwo formulas
define holomorphicfunctionsin those respectivestrips. G~(t,A, B) are their boundaryvalues.

If 0 � Im z � /3, then

G~(z,A, B) = G~(z— i/3, A, B). (3.9)

Indeed,replacingz by z — i/3 in (3.8a)andcyclically permutingthe factorsinside thetraceyields (3.8b).

For z = t, (3.9) can be formally written
(BA~)4= (A,14B)4 , (3.10)

but neitherits derivationnor its applicationsrequirethat (3.1) definean operatorA~for nonrealz. (In
generalit doesnot.)

Condition (3.9) or (3.10) is called the KMS condition, after Kubo [69] and Martin and Schwinger
[70]. It can be given a precisesensein terms of C*~and Von Neumannalgebrasand their statesfor
systemsfor which Tr e

4!I diverges (e.g., noninteractingspatially infinite systems).In this context it is
nowacceptedas a definition of “thermalequilibrium at temperature1//3” following Haag,Hugenholtz
and Winnink [52]; see also [53, 79, 81, 67]. For somesystems(particularly many infinite, interacting
systemsat low temperatures),(3.10) doesnot uniquely determinethe state.This can be physically
interpreted as the existence of more than one thermodynamic phase at that temperature. For detailed
expositions of this subject, see [59] and [13, chapter 5].

3.2. Periodicity

The KMS condition obviously is relatedto the periodicityproperty of thermal two-point functions,
(2.49); nevertheless,(3.9) and (3.10) as they standarenot statementsof periodicity. We aim here to
clarify this relationship.

Two analyticfunctions, G~andG, havebeendefinedin disjoint, adjacentstrips, just as in (2.46).
Moreover,(3.9) statesthat oneof theseis the translateof theother. Therefore,we arefree to definea
periodic function throughoutthe complexplane,with thepossibleexceptionof the liness Im z = N/3,
by

~4(z,A,B)=G~(z,A,B) for 0<s<f3, (3.lla)

~4(z,A,B)=G~(z,A,B) for —/3<s<0, (3.llb)

and, in general,

~4(z, A, B) = G~(z— iN/3, A, B)

= G!(z —i(N—1)13, A, B) (3.llc)

for anintegerN appropriateto the strip whereinz lies. ~ satisfies(2.49). But this constructiondoesnot
haveterribly much contentin the mostgeneralcase:~ is not in generalanalyticon the real axis, and
hencethe functionsdefinedin the variousstripsareunrelatedexceptfor the periodicitywhich hasbeen
imposedby fiat.
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Suppose,however, that A,B = BA~for all t in some open interval I of the real axis. Then the
boundaryvaluesof G~(z, A, B) coincide on I, and just as in section2 one can concludeby the
edge-of-the-wedgetheorem that G~ are restrictionsof a single holomorphic, periodic function,
~8(z, A, B), definedin a connected region making up all of the complexplaneexceptpartsof the lines
s = Nf3. (In fact, in this case of boundedobservablesthe desired result follows from the more
elementarytheoremof Painlevé[85].)

If A,B + BA, = 0 on I, one can modify the definition of ~ so that

~4(z,A,B)=—G~(z,A,B) for0<s</3,

obtaining an analytic functionwhich is antiperiodic:

~4(z+if3, A, B) = —~4(z,A, B)

(henceperiodicwith period2/3). In particular,on this basisthe theory of thermalstatesof Fermi fields
can be built up in parallelto section2.

In relativistic field theories,the commutativity (or anticommutativity)of fields or observablesat
spacelikeseparationsthus allowstheconstructionof masterholomorphicfunctionsembodyingtheKMS
condition as a periodicitypropertyin imaginary time, as we demonstratedin detail for noninteracting
scalar fields in section2. This proceduredoes not apply to nonrelativisticquantumtheory in the
formalismof secondquantization,sincetherethe field operatorsat different timescannotbe expected
to commuteanywhere;one has for all x andy the situationfound in the relativistic caseonly when
x= y. Thus the nonrelativistic case, which historièally was studied earlier, is, in a sense, more
complicated then the relativistic case! Understandably,much writing about finite temperaturein
relativistic theorieshasbeenbasedon transcriptionsof resultsand argumentsalready knownfor the
nonrelativisticcase.The simple,powerful analyticstructureof the two-pointfunctionsin the relativistic
casehastherebybeenobscuredin the literature.It is instructiveto developthenonrelativistictheoryof
thermalGreenfunctionsasfar aspossiblealongthe lines adoptedherefor relativistic fields; we do that,
sketchily, in appendixA.

3.3. Symmetries

We havepreviouslyemphasizedthat theperiodicitycondition (2.49) usuallyinvolves“jumping over
a cut”; that is, it relatesvaluesof ~ at pointsin two differentstrips of holomorphy.Ontheotherhand,
combining (3.9) and (3.7) one arrivesat

G~(t— i$, A, B) = G~(—t,B, A). (3.12)

This equationrelatesboundaryvaluesof functionswithin the same strip; on the left side a limit as z
approachesthe bottom boundaryof the strip from above is understood,while on the right, z
approachesthe top boundaryfrom below. Of course,becauseof the interchangeof A and B we are
dealing herewith two different functions; also, a reflection in t is involved. In somecircumstances,
varioussymmetrieswill eliminateoneor the otherof these“twists”. Theserelationshipsarepotentially
useful— and also a potential sourceof confusion. Therefore,we shall dwell upon themawhile.

We return to the two-point function of a chargedscalarfield with equationof motion (2.8), (2.4).
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For simplicity we assumeno boundaryconditionsarenecessary.(Many of the conclusionswill extendto
interacting scalar fields with the samesymmetries.) A systemof chargedparticles in an external
magnetostaticpotentialA. (but no electrostaticpotential)ought to be invariant underCT, anoperation
of simultaneouscharge conjugationand time reversal. If the magnetostaticpotentialvanishes,the
systemshouldalsobe invariantunder Cand T separately(evenif the staticgravitationalpotential,g,~,

andscalar (masslike)potential, V, are still present).In the field theory the C operatorinterchanges4i

and çb ~. Recall also that any symmetrywhich includestime reversalinvolves a complexconjugationof
matrix elements,as well as reflectionof t.

An equilibrium state(with vanishingchemicalpotential)shouldexhibit the indicatedsymmetries,be
it at zero or finite temperature.We shall now showthat the systemsconsideredby us indeeddo this.
The identity expressingCT invariance is

CT: (~(t, x) ~ y)) = (~
t(-t, x) q~(O,y))*. (3.13a)

The right-handside equals(~~(0,y) 4(—t, x)). So, using the definitions (2.19—20)and (2.39—40),we
rewrite (3.13a) as

CT: G~(t,x, y) = G_(—t, x, y). (3.13b)

Fromthe explicit expressions(2.19—20) and(2.43),oneseesthat (3.13b) is satisfiedby the vacuumand
thermaltwo-point functions.

Charge-conjugationinvarianceby itself is

C: (4(t,x) ~t(~ y)) = (~t(t,x)~(0, y)) . (3.14a)

(Fora neutralfield this is a tautology.)Usingtime-translationinvariance,we rewrite theright-handside
as (~t(o,x) ~(—t, y)). It follows that in the G notation,the condition is

C: G~(t,x, y) = G_(—t,y, x). (3.14b)

Finally, for time reversalwe have

T: (~(t, x) 4 t(0, y)) = (/~(—t, x) ~t(~ y)) * ; (3.15a)

after manipulationssimilar to the foregoingit becomes

T: G~(t, x, y) = G~(t,y,x) . (3.15b)

(The sameis true of G..) Now notethat in the absenceof the magneticfield, the complexconjugateof
anyeigenfunctionof K (2.4) is also an eigenfunctionwith the sameeigenvalue.Thus {~(x)}~~and
{ ~ are equally valid orthonormalbasesfor the cv-eigenspace,so the integral kernel of the
projectionoperatoronto that subspacecan be written in eitherof the alternativeforms

~ ~(x) ~(y)* = ~ ~.(x)* ~(y). (3.16)
W’W
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This allows (3.14b) and (3.15b) to be verified on the explicit expressions(2.19—20) and (2.43). (This
argumentremainsvalid for continuousspectrum,mutatis mutandis.)

Remark: Werewe not interestedin coveringthe casewith anexternalmagneticfield, we would have
written the basicfield expansionas

~(t, x) = ~ (2w,.)1’2 [~,.(x)exp(—icv,.t)a,. + ~,.(x)*exp(iw,.t)b] (3.17)

insteadof (2.15). (Of course,by so doing one changesthe definition of b,..) That is the only sensible
formalismfor treating the Hermitianfield, whereonewants to havebt,. = a~.In that formalismit is C,
ratherthan CT, invariancewhich is immediatelymanifestwithout appealto (3.16).

Now considerthe consequencesof combining thesesymmetrieswith the KMS condition, (3.9). In
the presentsituationthe latter becomes(on the boundary)

G~(t—iI3,x,y)= G~(t,x,y). (3.18)

[Use the definitions (3.8) with A = ~(0, x), B = ~t(

0 y).] If (3.13b), CT invarianceholds, then

G~(t— if3, x, y) = G~(—t, x, y). (3.19)

If Cholds, then

G~(t— if3, x, y) = G~(—t, y, x). (3.20)

If T holds, then

G~(t— i/3, x, y) = G~(t,y,x). (3.21)

We can define a two-point function for / ~preciselyanalogousto G~ for 4:

H~(t,x, y) Z~Tr[e
41’

4t(t x) q
5(O, y)] = G~(—t,y,x) (3.22)

(with a similar definition for /3 = cr~).Then (3.18) can be rewritten

G~(t— i/3, x, y) = H~(—t,y,x). (3.23)

Similarly, if T holds, we have

G4÷(t— if3, x, y) = H4+(—t, x, y). (3.24)

The periodicity condition(2.49)equatesthevalue of ~ atthe pointA in fig. 3 to thevalueat pointB
(in the nextstrip). Fromone point of view, (3.18) is merelya restatementof that fact— sinceG4~are
restrictionsof ¶~to adjacentstrips, as indicatedin (2.46) — and (3.21) is a similar relation with an
exchangeof x andy. On the otherhand, (3.21) is rewritten in (3.24) as anequalitybetweenthe value
of one two-point function atA andthe valueof a differentone at C (in the samestrip but with time
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reversed).If CT holds, we havea relation (3.19) betweenA and C for the sametwo-point function.
The relations(3.23) and (3.20) are like thesebut with the additional exchangeof x and y.

In no casedo we havean equationrelatingpointsA and D (samestrip, samesign of t) — unless~
happensto be continuousacrossthe axis there,so that its valuesat B andD areequal.Such is of course
the case when ti < d(x, y); it can also happenwhen ti > d(x, y) if the field satisfies Hugyens’s
principle, so that the commutatorvanishesat timelike separationsas well as spacelikeones.Example:
the masslessfree scalarfield in Minkowski space-timeof evendimensiongreaterthanor equalto 4. See
also [39, pp. 221—227] and referencestherein. In curved spaces,polelike singularities may be
superimposedon the cut, becausetwo pointsmaybe connectedby bothtimelike andnull geodesics[54,
esp. captionto fig. 4].

3.4. Orderingin imaginary time

Oneoccasionallyencountersthe misconceptionthat workingwith the time-orderedfield product[see
(2.28) and (2.52)] insteadof the ordinaryproductis responsiblefor eliminating the “twist” in the KMS
condition and converting it into a simple statementof periodicity. This is entirely false: As we have
seen,the time-ordered(Feynman)two-point functionarisesfrom the sameanalyticfunction, ~, that
yields the ordinary (Wightman) two-pointfunctionupon choosingadifferent direction of approachto
the cuts. We haveperiodicity in moving from A to B (fig. 3) independentlyof any time ordering;
furthermore,for a fixed sign of t, GFcoincideswith either G.. or G_ andwe do not haveequality in
movingfrom A to D (exceptin very specialcases,as mentionedat theendof section3.3). (Much of the
confusionis due to lack of recognitionof the existenceof the cutsin the earliestpaperson thermal
Greenfunctionsin connectionwith black holes.)

Whatis relevantto the KMS conditionis orderingin imaginary time [61,chapter1]. Let z = z2 —

s = Im z, sI </3. In the notationof section3.1 define

1G
4(z A B) if s<0
+ (3.25)F ~-G!(z,A,B) if s>0.
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Then, formally,

G~(z,A, B) = (Y,,(A~2B~,))4 (3.26)

A B if{ f (3.27)
z1 z2 1 2

(Note: The smaller value of s appearson the left operator.)From (3.11) we see that

G~(z,A, B) = ~
4(z,A, B) for sI </3 (3.28)

— that is, throughoutthe two centralstrips in fig. 2. Thus

G~(z—i/3,A,B)=G~(z,A,B) (3.29)

for 0< s < /3 (and also at the boundaries,if the limits are takenproperly).
The definition (3.27) can be extendedto pointswhereIm z = 0, Rez ~ 0 by putting the operator

with the larger valueof Rez on the left. Thus onerecoversthe usualg productby approachingthereal
axis from the directionsindicatedin fig. 1. This extensionto equalimaginarytimesseemsto us to be an
arbitrary conventionwhich is not particularly important, at least in the relativistic context. See also
appendixA.

4. Horizons

4.1. Hyperbolicpolar coordinates(the Kruskal—Rindlertransformation)

A body at rest in the static gravitational field of a spherically symmetric mass must undergo a
constantaccelerationto avoid being pulled into the centerof attraction.A static gravitationalfield is
thereforea physical situationmorecloselyanalogous,in someways, to flat spaceas experiencedby a
uniformly acceleratedobserverthanto flat spaceas experiencedby an inertial observer.The pathof a
uniformly acceleratedobserver through Minkowski space-timeis a hyperbola. If this motion is
continuedfor all time, thereis an associatednull (lightlike) hypersurface,thefuture horizon, beyond
which lies a region of space-timefrom which signalscan neverreachthe observer,andapasthorizon
boundingaregion to which the observercould neverhavesentsignals(seefig. 4). Togethertheseare
calledsimply “the horizon”. A blackhole,almostby definition, is a gravitationalfield in which apair of
null hypersurfacesexistswhich formsa horizonfor everyexternalstaticobserver.(By “black hole” we
shall meanherethe maximalanalyticextensionof the vacuumSchwarzschildsolution(4.9), ratherthan
a nonstaticconfigurationcontaininga collapsingstar.)

In the caseswe shalldiscuss,the region R of space-timeexterior to the horizonis static,hencehasa
time-translationsymmetrygroup.The crucialpoint is that in the vicinity of the horizon, these symmetries
havethe geometricalcharacterof boosts(homogeneousLorentz transformations)rather than ordinary
time translations.Indeed, in the caseof uniform accelerationin fiat space,theyare a one-parameter
group of boosts. A coordinatesystemmanifestingthe static nature of the region R must become
singularon the horizon. The associationof the horizonwith finite temperaturein quantumfield theory
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Fig. 4.

is closelyconnectedwith the mathematicalnatureof a transformationto acoordinatesystemwhich is
regularon the horizon [68, 76, 421.

Considerfirst Minkowski space-time,of arbitrary dimensionn + 1 � 2. Let x x” be a Cartesian
coordinatein the direction of the acceleration,and define new coordinates(T, r) by

t= rsinh r, x = rcoshr. (4.1)

Thenthe flat metric transformsthis way:

—ds2 —dt2+ dx2 + dQ2= —r2 dr2 + dr2 + df12 (4.2)

where

d~2~~(dx~)2 (4.3)
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is the Euclideanmetricof the transversedimensions(if any).With the range—~ < T < ~, 0< r <00, the
coordinatescover the wedge-shapedregion R (“Rindler space”)definedby tI <x”; the linesparamet-
rizedby r, with r andx~ (x’,. . . , x” 1) constant,arehyperbolicpathsof constantacceleration(fig.
4).

The scalarfield in R maybe quantizeddirectly by separationof variablesin the coordinatesystem
(T, r, x1) [41, 12, 19, 15]. In the notation of section2.1, we havehere

M=[0,oz)xR”~, %~=RxM=R. (4.4)

Sincewe wish to identify the field in R with the field in Minkowski space,it is convenientnot to make
the conformal transformation(2.12). Therefore,we will be working with the operatorK of (2.11),
which has the form

= —r
2~— ru,. — r2V~+ r2m2 (4.5)

(V~ Laplacian with respect to the transversedimensions, if any). Otherwise, section 2 applies
unchanged.

We shall now showthat the Rindler two-point function

~~“(C~ (r~,x±), (r~, y.~)) (~nsr+io) (4.6)

is equal(after compositionwith the coordinatetransformation)to the Minkowski two-point function

~~z,x,y) (znst+is),

which was studiedin section2.2. Therewe saw that

~ y)F(—z2-i-Ix—y12),

whereF(w) is a function holomorphicexceptat w = 0. Restrictingthe space-timepointsto the Rindler
wedgeandusing (4.1) yields

~ (4.7)

To see that (4.7) is the sameas (4.6), note first of all that the right-handside of (4.7) with r
2 —

replacedby ~ hasthe correctanalyticity andperiodicitystructurein ~ cf. fig. 2. Thereforeit sufficesto
showthat its restriction to ~= i(o2 — o-~)(o~real) is the kernelof the operator

(ô
2/&r2 + K)~

on L2(51 x M; r~do drdfl), where S1 is a circle of circumference2ir. But this restriction is just
— s,,X, y) written in termsof polar coordinatesdefinedby

s=rsino-, x=rcoso. (4.8)

Thus,the desiredequation(2.26), which readshere
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-~ + K~] G~(u2— ~, (ri, x1), (r~, y~)) = 5(u2 — ~) ~(r~— r~)8(x1 — y1) r~.

is simply a transcriptionto polar coordinateson the (s, x) planeof the equation

[—~_V~)+m2] G~(s2—s1,x,y)=6(s2—s,)6(x—y),
c9s2

and the conclusionfollows.
As a result, the Minkowski vacuumstatemaybe viewed,on restrictionto R, as the Rindler thermal

statewith /3 = 2 IT. Whenonetakesthe normalizationof the Rindler time coordinateinto account,one
seesthat the effectiveRindler temperatureat a point (T0, r0, x0) in R is proportionalto the acceleration
correspondingto the hyperbola(T, r0, x0) through that point — i.e., to r~.For further discussionof
physical implicationssee Sciamaet al. [78] and Bell and Leinaas[4].

For comparisonwith the Schwarzschildcaselater, it is useful to look at the foregoingdevelopment
from this angle:The vacuumtwo-point function, G~, + (t, x, y), of a free scalarfield in Minkowski space
hasan analytic continuation,cg~(z,x, y), to complexvaluesof z t + is, which is holomorphicalong
the whole s axis if x� y. Such a holomorphicfunction is necessarilya 2ir-periodic (and holomorphic)
function of o whenpolarcoordinatesareintroducedby (4.4). (It is alsopossibleto interpolatebetween
real ~ and imaginary~, at the costof allowing the Minkowski spatialcoordinate,x” — y’~,to become
complex.Onecan checkthat,for fixed positive r, suchpointsremaininside the tube wherethe vacuum
two-point function is analytic [cf. 85, esp. theorems2.8 and 3.5].)

Historical remarks:The first inkling that accelerationis associatedwith temperaturein quantumfield
theorywas obtainedby Davies [25], who appliedHawking’s derivatiohof black-holeradiance[551to a
reflecting barrier in flat space.The landmarkpaperon the subject,by Unruh [88], usesthe methods
which are the subjectof our section4.2. The approachthrough the KMS condition on the two-point
function, which we havedescribedhere,was developedby many authors,including Dowker [33, 34],
Christensenand Duff [23], andDeWitt [28], in responseto analogousdevelopmentsin the theoryof
black holes— to which we turn next. Meanwhile, Bisognanoand Wichmann [8, 9] proved a related
theoremin axiomaticfield theory,whoserelevanceto the horizonproblemhasbeenstressedby Sewell
[80, 82] and Kay [64, 65].

Now considerthe (4-dimensional)Schwarzschildmetric, which describesa nonrotating,uncharged
blackhole of massM:

—ds
2= —(1 — 2M/r) dt*2 + (1 — 2M/r)’ dr2 + r2 dO2 , (4.9)

wherenow

d122= do2 + sin26d~2, (4.10)

the usualangularelementin sphericalcoordinates.Thehorizon is at r = 2M,andthe rangeof relevance
of (4.9), analogousto R, is 2M < r <00, —00< t~K<00 If

r* = r + 2M ln(r/2M —1) (4.11)

(the Regge—Wheeler,or tortoise,coordinate),so that
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—00< r* <00 dr*Idr= (1 —2MIr)~, (4.12)

then

—ds2= (1 — 2M/r)(_dt*2 + dr*2) + r2 d112. (4.13)

If we introducecoordinates(t, x) by (4.1) with

ran t*14M (4.14a)

and r in (4.1) replacedby

r’ 2Me~ 2M e” ~4M = [2M(r — 2M)]”2 e”4M, (4.14b)

thenwe get

—ds2= ~ e~’2M(—dt2+ dx2) + r2 dA’22, (4.15)

wherer is definedimplicitly by (4.11).The original exteriorSchwarzschildregioncorrespondsto x> It~,
but the metric (4.15) extendsanalytically to a muchlargerregion of the (t, x) plane.Figure 4 applies
withoutchange,exceptthat the regionsF andP nowterminate(at a truesingularityof the geometry)at
hyperbolic boundaries,t2 — x2 = 4M2 (correspondingto r = 0 in the conventionalcontinuationof (4.9)
acrossthe horizon). This is the famousKruskal extension[68].

Sincethe Kruskalmetric (4.15) is not static (r dependson t as well asx), a quantumfield propagating
in this backgrounddoesnot havea vacuumstatein the usual sense.So the previousdiscussionof the
vacuumin Minkowski spacecannotbe carriedover intact to the presentsituation. Nevertheless,like
Minkowski space, Kruskal space does have an analytic extension to a complex manifold, the
imaginary-timesectionof which is areal manifoldof positivedefinite metricwherethe hyperbolictime
coordinateis transmutedinto an angularcoordinate.The metric of this spaceis

~ e~2~(ds2+ dx2) + r2 dQ2= (i — ds*2 + (i — ~-~-~)dr2 + r2 df?2, (4.16)

where,in analogyto t’ and z,

s*an4M~.r ~anr+iu; (4.17)

and anotherway of statingthe point is that, having arrivedat the right-handside of (4.16) by formal
analyticcontinuationof (4.9),onefinds that the only assignmentof aperiod, /3, to s~which eliminates
the singularity on the axis (r = 2M) is /3 = 8irM [48, 50, 56].

It is thennaturalto considera statewhosetwo-point function (or Feynmanpropagator)analytically
continuesto thisimaginary-timemanifold;Hartle andHawking [54]gaveanargumentfor assumingthis
to be the case,basedon path integrals for relativistic particles. Such a state will satisfy the KMS
condition on the original Schwarzschildspace-time,with temperatureTM an(8 ITM) 1 — the same
temperatureassociatedby Hawking [55]with a starcollapsingto form a blackholeof massM. Gibbons
and Perry [49, 50] continuedthis analysis and identified the Hartle—Hawkingpropagatorwith that
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appropriateto a blackhole in equilibriumwith a gas(of field quanta)of temperatureTM at infinity (cf.
section 4.2). Gibbons and Perry (see also [56]) gave a qualitative, perturbativeargumentthat any
interacting field must also havea naturalequilibrium statewith the black hole at this temperature;
Sewell [80, 821 madea rigorous, axiomatic studyof this question,startingfrom technicalassumptions
whosevalidity will merit future investigation.

Similar observationshave been madeabout de Sitter space (a space-timeof constant,nonzero
curvature) by Figari, Höegh-Krohn and Nappi [361, Gibbonsand Hawking [471,Dowker [341,and
others.In this casethe temperatureturns out to be proportionalto thecurvature,and the time variable
involved in the KMS condition is the “private” proper time of any inertial observer,extendedto a
Fermi normal coordinatesystem— which necessarilyterminatesin a horizon.

We should alsomention a similar constructionby analyticcontinuationin cosmological— nonstatic—

contexts [20—221.In this casethe time continuesto the radial, ratherthan the angular,coordinate.

4.2. Thedoubling of Fockspace

Simultaneouslywith the work of Hartle, Hawking, GibbonsandPerry (section4.1), the connection
betweenhorizonsandtemperaturewas beingworkedout by an alternativemethod[88,60, 421 (see also
[63—65,30]). Although it also involvesanalyticcontinuation,this approachconcentratesattentionmore
on the physical (real) space-time.We summarizeit here briefly.

In eitherMinkowski or Schwarzschildspace-time(or any static model with a horizon), the scalar field
can be quantizedin the region R in the standard way [41, 10, 12]. The field expansionhasthe form
(2.15) (or rather its continuumanalogue)for certaineigenfunctionscli,., whose explicit form will not
concernus till section4.3. Thereis an identicalconstructionfor the region L, symmetricalto R on the
otherside of the horizon (seefig. 4), with basis functions cli,., say.

A particularvacuumstateand associatedFock spaceare implied by writing down (2.15). What is
important here is the splitting of the field into a positive-frequency,or annihilation, part and a
negative-frequency,or creation,part, not the particularbasis {~J’,.} employed.Unruh enquiredhow the
positive-frequencynormal modesin R and L are related to the positive-frequencymodes in the
standardquantizationof the free field in Minkowski space.The latter are planewaves; Unruh noted
that theycan be characterizedby their propertyof holomorphyin the lower half-planesof the complex
variables

V=t+x, U~t—x. (4.18)

It turnsout (seethe cited referencesfor details)that this propertyis sharedby uniquelydetermined(up
to phase)linear combinationsof pairs of modes,onefrom R andone from L:

&(t, x) [2 sinh(ITw,.)]”2 exp(—iw,.r) [exp(irw,./2) çli,.(r) + exp(— ITw,./2)t~(r)]

= exp(—iw,.T)(cosh6,. vi,. + sinh 6,. ~/i~), (4.19)

where

cosh6,. (1 —

(4.20)
sinh 6,. exp(— ITCO,.) cosh 0,..

(We have written the coefficients in two different but equivalentforms to make contactwith the
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notationsof several referencesat once.) The basis change(4.19) inducesa redefinition (Bogolubov
transformation)of the annihilationand creationoperators:

A,. = coshO,.a,. — sinhO,.b~. (4.21)

The A,. are, by the analyticity argument,(continuum)linear combinationsof the annihilationoperators
of the standardquantization.

From(4.21) it follows that the vacuumof the standardquantizationis full of particlesfrom the point
of view of the original quantizationin R. Fromthe explicit form (4.20) of the coefficients,it follows that
theseparticles form preciselya thermal gas with inversetemperature/3 = 2 IT. So the conclusionof
section4.1 is reproduced.

On the Schwarzschild—Kruskalmanifold thereis no “standard” quantizationa priori. However, the
geometryof the horizon (more precisely, of its projection into the (t, x) plane— the remaining
coordinatesplaying no essentialrole) is the sameas in Minkowski space.It thereforeseemslikely that
the physically mostnaturalquantizationis definedby normalmodeswith the sameanalyticpropertyas
the flat-spaceplanewaves.Onethereforerepeatsthe construction(4.19—21)in the black-holecontext,
andobtainsastatewhich, relativeto theoriginal quantizationin the staticexteriorSchwarzschildmetric
(4.9), is characterizedby inversetemperature/3 = 8ITM. (The extrafactor4M arisesfrom a difference
in conventionalnormalization of coordinates— cf. (4.17).) This state is, of course, the Hartle—
Hawking—Gibbons—Perryequilibrium statepreviouslydiscussed.(Unruhactuallyappliedthis construc-
tion to only half the modesto obtain a state in which the black hole is radiatinginto emptyspace.)

The analytic continuation assumedin this approachis more conservativethan that in the other
approach,becauseit is requiredonly on the horizon,not in thewhole spaceR. On the otherhand,the
statementthat the constructedstatecomprisesa thermalgas of quanta,althoughformally unimpeach-
able [88, 60, 78, 86, 63 (appendix1)], glossesoverthe technicalitiesrelatedto the continuousspectrum,
whichpreventstheHamiltonianof thesystemfrom beinga trace-classoperator(seeremarksin sections
2.3 and2.4, see also [89]). Perhapsthe most efficient way to travel aroundthis problemis to passa
posteriori to the imaginary-timemanifold,verify the KMS conditionfor expectationvalues,andappeal
to the GNS construction.(Seealso [30].)

Israel [60] notedthat the construction(4.20—21)alreadyexisted in the literatureof generalquantum
statisticalmechanics.It appearsin the work of Araki andWoods[1, section4 andappendix1] andwas
rediscoveredby TakahashiandUmezawa[86],who called it “thermo field dynamics” anddevelopedit
as a computationaltool. (See also [3, 71, 87 (esp. chapter4), 73, 74, 63, 64, 72].) In this work the
degreesof freedomassociatedwith operatorsa’,., b,. are a fictitious mathematicaldevice,not associated
with a secondphysicalregion L.

There is a relationshipbetweenthis Araki—Woodsconstructionand the KMS conditionvia what is
now called the Tomita—Takesakimodulartheory (for which see [59, sections5—7]). This connection
[which is summarizedin Ojima’s papers] plays an important role in the original paper of Haag,
HugenholtzandWinnink [52]on the KMS condition. The work of BisognanoandWichman[8, 9] hasa
bearingon a geometricalrealizationof the modularstructurein the caseof (interacting)fields in (flat)
Rindler space.(The modularconjugationbecomesa reflection of R onto L.) The work of Sewell [82]
andKay [63, 64] is partly concernedwith extendingthis analysisto the Schwarzschildhorizon.

4.3. Infrared questions

The operatorK (4.5) of Rindler spacehas a spectrumwhich extendsall the way down to cv2 = 0,
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evenif the massof the field is positive. The sameis true of the analogousoperatorfor Schwarzschild
space.Therefore,it cannotbe takenfor grantedthat the various two-point functionsactually exist in
theseimportantcontexts.Kay [65,esp. theorem4.5] hasstudiedsomeessentiallyequivalentissuesby
operator-theoreticmethods.In this sectionwe investigatethe existenceof thermalstatesvia eigenfunc-
tion expansions.For Rindler spaceour resultsarecomplete,including caseswhich Kay left open.For
Schwarzschildspace,we areunableyet to give a conclusiveanswerby our methods;since Kay handles
this casewithout difficulty, we keepour remarkson it very brief.

As discussedin sections2.2 and 2.4, what is neededis to show convergenceof

~ J cv’ j~w;a)I2 dcv for the vacuum (4.22a)

and of

~ w2 f(w; a)I2 thu for thermalstates, (4.22b)

for arbitraryC~functionsf with eigenfunctiontransform

j(w; a) nsf~wa(X)* f(x) y(x)112d~x. (4.23)

Herecv2 is the variablerangingover the spectrumof K, a is a schematic“auxiliary quantumnumber”,
andthe eigenfunctionsof K are normalizedthrough

J~ ~(x)y(x)112d~x—ö(cvw’)~(aa’) (4.24)

We also recall that convergenceof (4.22a)or (4.22b) is equivalentto

C~C domK”4, C~C domK”2, (4.25)

respectively.
The physical interestof this issue is heightenedby its close relationshipto the phenomenonof

Bose—Einsteincondensation.Throughoutthis paperwe haveassumedthat the chemicalpotential~s
vanishes.In physicaltermsthis amountsto assumingthat the “particles” involved behavelike photons
or phonons. However, if they behavelike, say, 4He atoms, one should allow ~i � 0, and then the
convergenceor divergence of the integrals (4.22a,b) amounts to the occurrenceor absenceof
Bose—Einsteincondensation;see,e.g., [13, chapter5].

In the Rindler caseit is expedientto tradethe variable r for a variable

pnslnr (—c’z<p<oz), (4.26)

so that k assumesthe Schrödingerform
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K= —u21up2 + (—~ + m~)e2~ (4.27)

andactson the HubertspaceL2(M, dp dii), whereM is now simply R~.In particular,whenn = 1 and
m= 0 one hasK= —o2/up2,so that (4.23) amountsto Fourier transformation.Thus,both (4.22a)and
(4.22b)divergewheneverSR f(p) dp ~ 0.

On the otherhand, in the casesm>0, n = 1 andm� 0, n > 1 the eigenfunctionsare [42, 78]

cl’~k(P,x
1) = c(cv sinh irw)~

2 KIW(Kk e~)exp(ik.x
1) (4.28)

where

Kk—(k+m). (4.29)

Fromthe integralrepresentation

K1~(x) = e_X cash coswtdt (x >0) (4.30)

it is obviousthat

IK~~(x)I�K0(x) for x>0. (4.31)

Thus if we insert (4.28) into (4.23) and do thex~integral we infer that

If(cv;k)I~ccvJ KO(Kke~)dp, (4.32)
supp I

wherec dependsonly on f. Fromthis it easilyfollows that both integrals(4.22)converge.(To seethis
whenm= 0 andn > 1, recall that K0(x) —ln(1/x) as x—* 0.)

We concludethat in the Rindler casethe two-point functions exist for m>0, and also for m= 0
providedthat at leastone“infinite” transversedimension,ensuringacontinuousk spectrum,is present.
In particular,G~÷exists for every /3 � 00 in three-dimensionalRindler space-time,unlike the three-
dimensionalmasslessMinkowski case,whereG~ doesnot exist for /3 <00. For /3 = 2 ir thisresultcould
havebeenpredicted:~ is arestrictionof G~÷,which hasno infraredpathologyin threedimensions
(cf. sections4.1 and 2.2).

In the Schwarzschildcase,it is well known(see,e.g., [27, section5.1] for m= 0 and [37]for m>0)
that the analoguesof the Besselfunctionsin (4.2c) are eigenfunctionsof operators

K1 = _d
2ldr*2 + Vi(r*) (4.33)

wherethe potentials

Vj(r*) an (i — + ~ 1) + m2) (4.34)
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V

Fig. 5.

havethe schematicbehaviorgraphedin fig. 5. The questionwhether(4.23) holds is equivalent to the
questionwhether C~(R)belongs to the domain of each K~,a = — or — ~. Unfortunately, the
Schrödingerequationfor K1 cannotbe solvedin termsof standardspecialfunctionsas in the Rindler
case.One would expect, nevertheless,to find the answerto our questionby inspectingthe extensive
lore on one-dimensionalSchrödingeroperatorsand their eigenfunctions;surprisingly, this appearsnot
to be the case.It would suffice to provea boundof the form

sup cl,,.,i(r*)i ~ ~ , (4.35)
r*EB

cv—*0, a> ~, for arbitraryboundedsubsetsB C R, where cli~are the eigenfunctionsof K1 with the
standardnormalizationat infinity (guaranteeing(4.24)). Of course,it is physically obviousthat ~i.~,,j(r*)
with r* fixed vanisheswhencv—~0: As the energygoesto zero, the turningpoint for a classicalparticle
hitting the potentialhill movesoff to —ns, andevena quantumparticlewill not penetratefar beyondthe
turningpoint. However, just how fast the wave function vanishescannotbe establishedby heuristics
alone. One might hope that a rigorous asymptotic analysis of theseeigenfunctions,guidedby the
analogybetweenthe SchwarzschildandRindler potentialsnearthe horizon(r* ..00), would establish
the desiredbehavior;but such a study is beyondthe scopeof the presentpaper.

4.4. Concludingremarks

The discoveryin the mid-1970sof an unexpectedrelationshipbetweengeometricalhorizonsand
thermaleffectsstimulatedmuchspeculationthat a profoundunification of gravitation,quantumtheory,
andthermodynamicswas at hand.Furtherinvestigationclarified thismysteriousrelationshipby fitting it
into the respectiveframeworksof two characterizationsof finite-temperatureequilibrium stateswhich
were already part of ordinary (nongravitational)quantumstatistical mechanics:the Araki—Woods
constructionof a double Fock space,and the Kubo—Martin—Schwingercondition of periodicity in
imaginarytime. The periodicityemergesautomaticallyin the contextof a horizon,becausethe natural
static coordinatesystemfor the problemis a hyperbolic polar coordinatesystemassociatedto the
horizon. Likewise, the doubling of the Fock spaceis the unsurprisingconsequenceof the division of
physical spaceinto two noncommunicatingparts by the horizon [cf. 64].
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On the other hand,within quantumstatisticalmechanicsitself both the KMS condition and the
Araki—Woods constructionaresimply mathematicalfacts, for which clearand direct physical motiva-
tions arehard to find. This problemis acknowledgedin the literatureof the subject:

The mathematicalstructureof the representation,as we haveconstructedit, is rathersuggestive.
[The field] canbeinterpretedasthe sum of anannihilationoperatoron the first space(or first kind of
particle) and a creationoperatoron the secondspace(or secondkind of particle). This immediately
brings to mind the particle—antiparticledescriptionin elementaryparticlephysics.... Howeverwe
do not understandthe significanceof theseremarks. [1]

Starting from the Gibbs ensembleit is evident that [the KMS] condition is satisfied but it is
completelyunclearthat this condition aloneshouldcharacterizeequilibrium. Nevertheless,thisis the
casefor a large classof [systems].This rathersurprising result is bothof practicaland conceptual
utility. ... [T]heKMS conditionhasavariety of characterizationswhich emphasizedifferentphysical
featuressuchas stability underperturbationsandergodicity in the form of asymptoticAbelianness.
This clarifies to a large extentthe natureof the equilibrium statesevenif it doesnot provide any
profound explanationfor their definition. [13]

So, althoughthe gravitationalor geometricalhalf of the connectionis now manifest,at leastfor the
“free” fields consideredin this paper,a completelysatisfying, intuitive understandingof the thermal
natureof horizonsremainselusive,evenfor this simple case.
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Appendix A. Nonrelativistic “free” fields and parabolic Green functions

We outline the analogueof the developmentsin section2 for a nonrelativisticsystemof noninteract-
ing bosons.We shall againconsidera manifold M andan operatorK given by (2.4). However, in the
nonrelativistic context K representsthe one-particleenergy,and V(x) an electrostaticpotential. We
shall again assume(2.5)—(2.7),with the additional restriction that the spectrumof K hasa positive
lower bound. For notational conveniencewe shall also assumethat K hasno continuousspectrum.

With theseassumptions,our systemcan be describedby a quantumfield i/i(t, x), satisfying

iocli/ut=Ki/i (Al)
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andcanonicalcommutationrelations.Specifically, we maytake

cli(t, x) = E ~,.(x)exp(—iw~t)a,. (A2)

which is the analogueof (2.15). We mentionin passingthat what follows hasan obvioustranslationto
the fermion case: One needsonly to replacethe boson annihilatorsin (A2) by fermion ones. (In
contrast,for the Klein—Gordonfield (2.15) this replacementdoesnot leadto canonicalanti-commuta-
tion relations.To describenoninteractingfermionsrelativistically one needsa different field, suchas
the Dirac field.)

In analogy with (2.19) and (2.20),one hasvacuumtwo-point functions

G~i(t,x,y)an(0~çli(t2,x)~r
t(t

1, y)~0)

= ~,.(x) ~,.(y)* exp(—icv~t) (tns t2 — t1) (A3)

and

G~(t,x, y) (0I~
t(t

1,y) ~(t2,x)iO) = 0. (A4)

By repeatingthe ab initio calculationof the Gibbs two-pointfunctionsin sections2.3 and 2.4 onefinds
the finite-temperaturetwo-point functions

G~(t,x, y) = (cli(t2, x) 4Y(t1,y))4

= ~ ~,.(y)~(1- exp(-/3cv~)~’exp(-iw~t), (A5a)

G~(t,x, y) (~t(t y) cl’(t2, x))4

~,.(x)~,.(y)* (1- exp(-$w~))~’exp(-/3w~)exp(-iw~t), (A5b)

which clearly satisfy

G~(t,x, y) — G~(t,x, y) = [cli(t,x), cl’
t(O, y)] = G(t, x, y). (A6)

Theseequationsare to be comparedwith (2.43) and (2.44).
Settingz an ~ + is, we now write

G~(z,x, y) = ~,.(~v)iI,(y)* (1 — exp(—/3cv~))~ q4+(z) (A7)

with

q~(z)anexp(—icv~z), /3 ~ 00

q~(z)an{~p(_/3cv~)exp(-iw~z), ~ <. (A8)
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In analogywith thediscussionbeginningwith (2.45),we seethatG~is holomorphicin the regions<0,
and G.. in the regions< /3. Thesefunctionsarenot two piecesof one holomorphicfunction, sincethe
commutator(A6) doesnot vanishon anopenintervalof the t axis in thenonrelativisticcase.Of course,
the KMS condition (3.9) holds true again: G in the strip 0 ~ s � /3 is a copy of G~in the strip
—/3 � s � 0. If we identify (say) t — i/3/2 with I + i/3/2, we obtain a cylindrical complex manifold on
which is defineda function~4(z, x,y) which is holomorphiceverywhereexcepton the I axis, whereit
hastwo different boundaryvalues.Similarly, for /3 = 00 we put G at s<0 togetherwith G~at s>0
(namely,zero!) to get a ~f holomorphicexcepton s = 0.

As in section2, let

G4(s, x, y) an ~4(is, x, y). (A9)

(It is not hard to seethat G‘~,viewedas a distributionin (s,x, y), doesnot dependon whichboundary
valueof ‘~ at s = 0 is taken.Thuswe neednot andshallnot commitourselvesto a choice.)Let usfirst
considerthe case/3 = 00• Then it is clear that G~(s

2— s1,X, y) solves

[—dIds2+ K(X)] G = ö(s2— s1) ~(x — y) y(y)
112. (AlO)

In fact, G~is justthe usualGreenfunction for the (time-reversed)heatequationassociatedwith K(X).

We may also write

x, y) = (2IT)1 ~ J dk
0 ~,.(x)exp(ik0s2)~,.(y)* exp(—ik0s,)(—ik0 + cv~,

San52_S15.~0. (All)

Thus,G~can also be regardedas the kernelof the inverseto

—ô/ôs+K(X) (A12)

viewedas an operatoron the Hubert spaceL
2(R x M; ~1/2 dsd~x).This parallelsthe situationin the

relativistic case;cf. section2.2, esp. (2.25), (2.26).
We shall now showthat,with our definition of G~, the stateof affairs for finite temperatureis the

sameas in the relativistic case,too. Specifically, onehas

G4(s, x, ~) = j31 ~ ~ ~i,.(x)exp(2ITins
2/13)çfr (y)* exp(_2irinsiIf3)[_ ~ + cv~] 1

~ ~=-~ P (A13)

which is an immediateconsequenceof the readily verified equality

~ [ ~ + cv2] exp(2irins//3)= /3(1 — exp(—/3w
2))~exp(—13cv2)exp(w2s), 0< s < /3.

(A14)
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Thus, G4 solves (AlO), viewed as an equationon ~1 X M (where Si hascircumference/3), since it
equals the kernel of the inverse of (A12), regarded as operating on functions in L2(S’ x
~ ~,1I2 dsd°x).This is the analogueof the situation describedin section 2.3 [seethe paragraph
containing(2.50b)].

If we take boundaryvaluesof ,~j3on the real z axis in the sameway as describedbelow(2.52), then
we obtain the usually consideredtime-ordered Greenfunction

G~(t,x, y) an(9[~(t, x) ~Y(o,y)])
4 = G~(t,x, y) + 6(t) [çli(t,x), qY(0, y)~. (A15)

It satisfiesthe inhomogeneousSchrodingerequation

(io/dt—K(X))G=i6(t)6(x—y)y(y)~
2. (A16)

Theseequationsarethe nonrelativisticcounterpartsto (2.53) and (2.54). Also, G~againconnectsthe
boundaryvaluesof ~ from adjacentholomorphystrips.We repeat,however,that in the nonrelativistic
casetheseboundaryvaluesare everywheredifferent, in sharpcontrastto the relativistic case.

Finally, we note that the finite-temperaturefunctionsmay againbe written as imagesumsof the
T=0 functions, as in (2.58) and (2.59). This follows from the sameargumentsas thosepresentedin
section2.5.
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