Physics 530-11 Penrose diagram of collapse

The Vaiyda metric

$$ds^{2} = \left(1 - \frac{2M(v)}{r}\right)dv^{2} - 2dvdr - r^{2}(d\theta^{2} + \sin(\theta)^{2}d\phi^{2})$$
 (1)

is the solution to Einstein's equations of a collapsing null dust (ie matter whose stress energy tensor is of the pressureless form

$$T^{\mu\nu} = \rho u^{\mu} u^{\nu} \tag{2}$$

where in this case the velocity u^{μ} is a null vector, rather than a timelike velocity. In our case, we can take u^{μ} to be the r coordinate axis, and ρ in that case is proportional to $\partial_v M(v)/r^2$.

If we choose M(v) to be a step function M(v) = 0 v < 0 and $M(v) = M_0 > 0$ v > 0 then the infalling null matter is a shell like (delta function) sphere of matter. Thus we have

$$ds^2 = dv^2 - 2dvdr - r^2d\Omega^2 \qquad v < 0 \tag{3}$$

$$ds^{2} = \left(1 - \frac{2M_{0}}{r}\right)dv^{2} - 2dvdr + r^{2}d\Omega^{2} \qquad v > 0$$
(4)

where $d\Omega^2 = d\theta^2 + \sin(\theta)^2 d\phi^2$. Going to null coordinates, we can define the coordinate u to be v-2r for r;0. This gives the metric

$$ds^2 = dvdu - (\frac{v-u}{2})^2 d\Omega^2 \tag{5}$$

For v > 0 we want the coordinate u to be continuous (which implies that r(v, u) must be continuous as a function of v) This can be done by defining

$$f(u) = (v - 2(r + 2M_0 \ln(\frac{r}{2M_0} - 1))$$
(6)

for some function f. Thus, we must have that

$$(-2(r+2M_0\ln(\frac{r}{2M_0}-1)) = f(-2r)$$
(7)

or

$$f(u) = u - 4M_0 \ln(\frac{-u}{4M} - 1) \tag{8}$$

Note that this works only for u < -4M. We then have for v > 0

$$ds^{2} = \frac{2M_{0}}{r} \left(\frac{r}{2M_{0}} - 1\right) f'(u) dv du - r^{2} d\Omega^{2}$$
(9)

where r is taken as a function if v, u defined by

$$r + 2M_0 \ln(\frac{r}{2M_0} - 1) = \frac{v - f(u)}{2} \tag{10}$$

The metric for v > 0 thus becomes

$$ds^{2} = \frac{r}{2M_{0}}e^{(v-f(u))/4M-r/2M}\left(1 - \frac{4M_{0}}{-u - 4M_{0}}\right)dudv - r(v, u)^{2}d\Omega^{2}$$
(11)
$$= \frac{r(v, u)}{2M_{0}}e^{\frac{-r(v, u)}{2M_{0}}}e^{(v-u)/4M_{0}}dvdu - r(v, u)^{2}d\Omega^{2}$$
(12)

r(v, u) is a continuous function of v, u for all values of v, u, and thus this metric is a continuous non-degenerate, non-singular function of v, u.

The Penrose conformal transformation is obtained taking v = tan(V) and u = tan(U), and multiplying the resultant metric by $cos^2(V)cos^2(U)$ (ie making a conformal transformation). This gives us

$$d\hat{s}^2 = \frac{r(v,u)}{2M_0} e^{\frac{-r(v,u)}{2M_0}} e^{(v-u)/4M_0} dV dU - r(v,u)^2 \cos^2(V) \cos^2(U) d\Omega^2$$
 (13)

We have

$$r(v, u) + 2M_0 \ln((r/2M_0) - 1_{=}(v - f(u))/2 = (v - u)/2 - 2M_0 \ln(-1 - u/4M_0)(14)$$

which implies that as $u \to -4M_0$,

$$r \approx 2M_0 + e^{v/2}(u + 4M_0) \tag{15}$$

while for large r

$$r\cos(V)\cos(U) \approx \sin(V - U)$$
 (16)

Thus, the metric $d\hat{s}^2$ is a finite metric everywhere, with $-\frac{\pi}{2} < V < \frac{\pi}{2}$ and $-\frac{\pi}{2} < U < 0$

The conformal diagram is given in Figure 1. \mathcal{J}^+ and \mathcal{J}^- are future and past null infinity $(r = \infty)$. I^+ is the singular (in the conformal space) future timelike infinity while I^- is past timelike infinity. I^0 is spacelike infinity. All of the I are singular points in the conformal metric $d\hat{s}^2$.

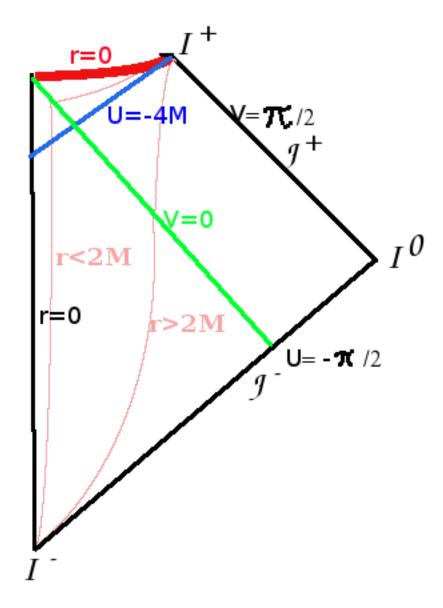


Figure 1: The Penrose conformal diagram for the black hole created by the collapse of a null shell of fluid.