Physics 530-11 Penrose diagram of Schwartzscild

0.1 Kruscal Schwartzschild

The Schwartzschild metric is

$$ds^2 = \left(1 - \frac{2M}{r}\right)dvdu - r^2d\Omega^2 \tag{1}$$

wehre $d\Omega^2 = d\theta^2 + \sin(\theta)^2 d\phi^2$ and

$$u = t - r^* \tag{2}$$

$$v - t + r^* \tag{3}$$

$$r^* = r + 2 * M \ln(\frac{r}{2M} - 1) \tag{4}$$

Thus $v-u=2r^*+4\ln(\frac{r-2M}{2M})$ and $e^{(v-u)/4M}=(\frac{r-2M}{2M}e^{r/2M}$ and we can write

$$ds^{2} = \frac{2M}{r}e^{-r/2M}e^{(v-u)/4M}dudv - ((v-u)/2 - 2Mln(\frac{r}{2M} - 1))$$
 (5)

We now define

$$\hat{U} = -4Me^{-u/4M} \quad u > 0
\hat{U} = u - 4M \quad u < 0
\hat{V} = 4Me^{v/4M} \quad v < 0
\hat{V} = v + 4M \quad v > 0$$
(6)

Now define

$$V = \tan(\hat{V}/4M) \tag{7}$$

$$U = \tan(\hat{U}/4M) \tag{8}$$

and continue to $\hat{U} > 0$ and $\hat{V} < 0$ by $\hat{U} \leftrightarrow \hat{V}$

for large r, $v-u=2r^*=2r(1+2M\frac{\ln(r/2M-1)}{r})$ This approaches r for large r, but the $2M\ln(r/2M-1)$ is a singular function as $r=\sin(V-U)/(\cos(V)\cos(U))$ goes to infinity. Thus the $U=-\pi/2$ and $V=\pi/2$ surfaces are well behaved but the metric as one approaches them is not very

well behaved. and is especially badly behaved as one approaches both of those limits. I_0 , spacelike infinity, is badly behaved not only in the conformal factor going to infinity there, but also that the conformal metric is badly behaved there. Similarly, the metric at I^{\pm} is badly behaved unlike the case for flat spacetime.

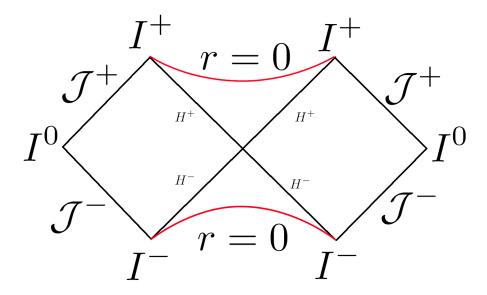


Figure 1: The Penrose conformal diagram for the eternal (Kruscal) black hole.