
Physics 530-11
Orbits in Schwartzschild Metric

Let us use the ordinary t, r coordinates for the Scwartzschild metric

ds2 = (1− 2M

r
)dt2 − dr2

1− 2M
r

− r2dΩ2 (1)

The Geodesic equations are given by
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where the last equation is just the condition that τ is the proper time along
the curve for either a timelike (+1), a spacelike (-1) or a null (0) geodesic.
(Note that these equations are valid even if we take them so that the last
equation is a constant on the RHS. The parameter τ would then not be the
proper time or proper distance, but what is called an affine parameter along
the curve.)

The first and second equation can be integrated to give

dt

dτ
=

E

1− 2M
r

(5)

dφ

dτ
=

m

r2 sin2(θ)
(6)

where E and m are integration constants.
These are just two particular instances of the fact that, if ξA is a Killing

vector, then

D

Dτ
(ξAuBgAB) = (DCξB)u

CuB + ξB
DuB

Dτ
(7)
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The Killing equation is DCξB+DBξC = 0, which is the condition that the Lie
derivative of the metrix along the vector field ξ is zero (which sets the first
term to zero) . uA, the tangent vector to a geodesic, is parallel transported
along the geodesic, which sets the last term equal to zero. Thus ξAuBgAB is
a constant of the motion. Also, if we have a group of Killing vectors, {ξAa },
where a labels the Killing vectors, then if κAB =

∑

a ξ
A
a ξ

B
a , κABu

AuB will
be a constant of the motion. This is a special case of a spacetime having a
Killing Tensor, κAB, which is symmetric and obeys D(AκBC) = 0. As above,
this Killing tensor will define a (quadratic) constant of the motion for the
spacetime. There exist spacetimes which have a Killing tensor not generated
by a set of Killing vectors. (The spacetime of a rotating empty spce– the
Kerr metric– is an example of a spacetime with a Killing tensor without it
being generated by a Killing vector. It is this Killing tensor which allows the
Kerr spacetime to have a complete set of integrals of the motion, allowing
one to write again reduce the geodesic equations to quadrature. ) (It has
two killing vectors, time independence, and rotation in around the z axis
(or φ independence), which give two constants of the motion, the Killing
tenzor gives a third, and the length of the tangent vector to the geodesic
gives a fourth constant of the motion. Since there are four equations, these
four constants completely determine the geodesic in terms of first derivative
equations for the four coordinates.

For the three rotational Killing vectors, κAB has components κθθ = 1,
κφφ = 1

sin(θ)

2
and κθφ = 0. Thus κABu

AuB is constant along the geodesic.,

or, taking the constant to be l2 we have,

l2 = r4





(

dθ

dτ

)2

+ sin(θ)2
(

dφ

dτ

)2


 (8)

is also constant of the motion. If we call ξAφ , the Killing vector of translations
in the φ component, such that ξAdfA = ∂φf , and choose ξAu

A = l, the square
root of the value of the rotational Killing tensor constant of the motion, we

immediately get that
(

dθ
dτ

)2
= l2(1− 1

sin(θ)2
) which is non-negative on the right

only if θ = π/2.
To return to the geodesic equations, define u = 1

r
(do not confuse this

u with the null coordinate used elsewhere or with the tangent vector to the
geodesic– I choose this notation only because it is conventional in many

2



papers and text books) ) to give

du

dφ

2

= −(1− 2Mu)u2 +
E2

l2
− [±1, 0]

l2
(1− 2Mu) (9)

We can write this as

du

dφ

2

= 2M(u− u1)(u− u2)(u− u3) (10)

where

2M(u1 + u2 + u3) = 1 (11)

2M(u3(u1 + u2) + u1u2) = [±1, 0]
1

l2
(12)

2M(u1u2u3) = −E2 − [±1, 0]

l2
(13)

If u1 and u2 are very small,(the orbit is is large), then u3 is close to 1/2M .

Note that, for the LHS of the equation for du
dφ

2
to be positive, and we label

the roots such that u1 ≤ u2 ≤ u3, u must either lie between u1 and u2, or
be larger than u3. We will concentrate on the former case.

0.1 Perihelion advance

A. Einstein ”Erklaerund def Perihelbewegung des Merkur aus der allgemeinen
Relaivitaetstheory” Koeniglich PreussischeAkademie der Wissenshafen (Berlin)
Sitzungsberichte (Nov 18 1915)

One of the first calculations Einstein did was to calculate the Perihelion
advance of Mercury, becoming extremely excited when the answer from the
theory agreed with the measured Perihelion advance minus the Newtonian
effect from the gravitational perturbations by the rest of the planets (partic-
ularly Venus and Jupiter). He calculated it in a linearized approximation to
his (earlier) theory in which Rij was the key. He does not give any details
as to how he derived the linearized solution he used. He was lucky in that,
of the many possible solution to the linearized equations (differing by small
coordinate transformations) he chose the one that worked, and which was
the linearization of the solution found by Schwartzschild a few months later.
In the following we will assume the Schartzschild solution and carry out the
calculation with that solution.
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Let us look at the timelike case first, and choose E very close to 1 and l
large. There will be one root, which I take to be u3, which will lie very close
to 1

2M
. The other two roots will be for very small values of u1, u2. Define

ū = (u1 + u2)/2 and ∆ = (u2 − u1)/2 and I will assume that both ū and ∆
are positive and very small.

If ū = ∆ this corresponds to a parabolic orbit in the newtonian case,
while if ū < ∆ the Newtonian orbit is hyperbolic.

Then u3 =
1

2M
− 2ū. We get

(
du

dφ
)2 = −(1− 6Mū)((u− ū)2 −∆2) + 2M(u− ū)((u− ū)2 −∆2) (14)

For very small ∆ << ū, and 2Mū << 1, the last term is small, and we have

u ≈ ū+∆cos(
√
1− 6Mūφ+M∆sin(

√
1− 6Mūφ)) (15)

Neglecting the periodic term in the argument, this is an elliptical orbit with
a perihelion precession of 2π(3Mū) per orbit. This was the first ”test”.
Einstein had his new theory more or less completed, when he calculated this.
(He used the first order linearized theory to do since Schwartzschild and
Droeste had not yet come up with the exact solution). He was highly excited
when he discovered that it fit the experimental results. His previous Entwurf
theory had produced a figure of only 18 seconds of arc per century.

For Mercury the perihelion advance is about 42 sec of arc per century
which is, within about 5% what Einstein’s theory gave. Using sattelite orbits
with their transponders, one can now reduce this down to much less than 1%.
For

Note that one must be careful. In this case the linear terms in u and the
constant give

2M

l2
= 2Mu3(u1 + u2) + u1u2 = (1− 4Mū)2ū+ 2M(ū2 −∆2) (16)

−(E2 − 1)/l2 = 2Mu3(u1u2) = (1− 4Mū(ū
2 −∆2) (17)

Note that by an approprite choise of E2 (which must be less than 1 for a
finite orbit which does not go to u = 0 or r = ∞) and l2 we can create a
near circular obit (ū > 0 and ∆2 << ū2.

For a while, in the 60s and 70s, there was a claim by Dicke that the sun
was not spherical but oblate– due presumably to a rapidly rotating core.
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That oblateness would have produced a gravitational field with a 1/r3 New-
tonian potential which would have caused some perihelion advance even in
Newtonian gravity. He used this to justify his ”Brans-Dicke” theory, a sort
of amalgum of the Nordstrom and Einstein theories (ie, it had a conformal
factor to the metric as well as the Einstein type metric which led to a re-
duced perihelion advance, and a reduced light deflection). The justification
diappeared when the solar oscillations were recognized, and the oblateness of
the sun disappeared. (Henry Hill measured the oblateness and found a much
smaller value than Dicke did. In the course of his measurements he realised
that the sun had oscillatory modes, and Dicke must have measured the sun
when the quadrapolar oscillations were at their maximum. Since these os-
cillation are much faster than the orbital period of even mercury, they will
average out in their effect on the orbit.)

0.2 Light deflection

For massless particles, we get

(

du

dφ

)2

=
E2

l2
− (1− 2Mu)u2 = 2M(u− u3)(u− u1)(u− u2) (18)

where again

u3 =
1

2M
− 2ū (19)

but the absense of the term in the potential proportional to u gives us

u3(2ū) + ū2 −∆2 = 0 (20)

or

ū = M(3ū2 +∆2) (21)

Ie, if M∆ is small, then ū is very small, (of order M∆2). We can write

(

du

dφ

)2

= (1− 6Mū)(∆2 − (u− ū)2)− 2M(u− ū)(∆2 − (u− ū)2) (22)
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But since ū ≈ M∆2 to lowest order in M∆, the term Mū is of order in
(M∆)2 and can be neglected. This gives

du

dφ

2

= (∆2 − (u− ū)2 − 2M(u− ū)(∆2 − (u− ū)2) (23)

or,

∫ du
√

∆2 − (u− ū)2
=
√

1− 2M(u− ū)dφ (24)

Integrating over u from 0 to ∆ + ū to 0, recalling that the total deflection
is that coming in toward the star and then going back out (or twice that of
going out), and using that u− ū ≈ ∆cos(φ), we get

2 arccos(− ū

∆
) = φ− 2M∆ (25)

or

φ = (π + 2
ū

∆
) + 2M∆ = π + 4M∆ (26)

Ie, in passing by the sun, the total angle is greater, by 4M∆ than that
for a straight line. This is the light deflection.

This has been accurately measured to better than 0.1% by the Hipparchus
sattelite, which can see the light deflection ( ≈ 1milliarcsec) of stars at 90
degrees from the sun. (It measured (1989-1994) the relative angle between
a large number (¿100,000) of bright stars to about 1marc sec, and one must
use the deflection of light by the sun to fit the positions of the stars. A future
sattelite (2012), Gaia, will measure down to 7µas and should measure the
light deflection to the 10−6 level by which point higher order effects become
important as well.

0.3 Shapiro Time delay

.
See Irwin I. Shapiro (1964). ”Fourth Test of General Relativity”. Physical

Review Letters. 13 789
Irwin I. Shapiro et al (1968). ”Fourth Test of General Relativity: Pre-

liminary Results”. Physical Review Letters. 20 1265
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Consider the equation for the time delay along the path

dt

dτ
=

E

1− 2M
r

(27)

or

dt

dφ
=

E

l

1

u2(1− 2Mu)
≈ E

l

(

1

u2
+

2M

u

)

(28)

There are three terms here. E/l is a function of M when written in terms
of ū and ∆. In particular −2M(u3)(u1)(u2) =

E2

l2
, or

(1− 4Mū)(ū2 −∆2) = −E2

l2
(29)

which, since ū = 2M∆2 to lowest order in M , we have ∆2+O((M∆)2) = E2

l2
.

Since the straight line, u = ∆cos(φ) would give the time along the short-
est path in the flat metric, any alteration of that path will alter the time
only to second order in that alteration of the path. Ie, any deflection from
that straight line will increase the length of that path, and thus the flat space
time only to second order in that deflection. Thus, taking the straight line
in u, φ space will give the value for that first term with corrections only to
second order in the deflection (and thus only to second order in M). The
second term is the correction due to the fact that the time goes more slowly
nearer the black hole (although the spatial part of the metric does play a role
in the time delay as well). Thus we get

δt =
∫ 1

∆ cos(φ)2
dφ+ 2M

∫ dφ

cos(φ)
(30)

=
1

∆
tan(φ) + 2M ln

(

1 + sin(φ)

cos(φ)

)

(31)

=
1

∆
(tan(φ2)− tan(φ1)) + 2M ln

(

(1 + sin(φ1)) cos(φ2)

(1 + sin(φ2)) cos(φ1)

)

(32)

Note that this is the change in travel time in t coordinates, and does
not take into account the change in proper time at either the source or the
receiver.

If we have a clock orbiting a star, as the orbiting star runs so that the
impact parameter ( 1

∆
) becomes small, the angles φ1 and φ2 go very close
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to −π/2 and π/2 respectively, and the logarithm becomes large. This loga-
rithmic dependence of the time delay on the motion of the background star
is what one fits. One of the most wonderful demonstrations of this is the
double binary pulsar PSR J0737-3039A/B which has an orbit almost edge
on. The rotation of the one pulsar (A) is the clock which beats extremely
regular time. Because the orbit is almost edge on the light passes very close
to B, suffering the time delay. The top plot is the best fit of the data to
the orbit if one does not take the shapiro time delay into account– a lousy
fit. The lower plot is the residuals (data-minus theory) for the best fit in-
cluding the Shapiro time delay, but with the shapiro time delay added back
into the residuals to show what its size is. The red line is the best fit, and
the points are the residuals. ( Tests of General Relativity from Timing the
Double Pulsar M. Kramer, et al. Science 314, 97 (2006))

Notes on derivation:
While I cannot see the problem in that above derivation of the Shapiro
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effect, I do not entirely trust it. So let us look at a more direct (but messy)
derivation.

The radial equation for light rays is

(

du

dφ

)2

= (1− 6Mū)(∆2 − (u− ū)2)− 2M(u− ū)(∆2 − (u− ū)2) (33)

which to first order in M gives (6Mū is of order (M∆)2 and to zeroth order
in M, u− ū is ∆ cos(φ))

arccos
(

u− ū

∆

)

= φ−M∆sin(φ) (34)

or

u = ū+∆cos(φ−M∆sin(φ)) ≈ ū+∆cos(φ) +M∆2sin(φ)2 (35)

I have chosen φ = 0 to be the angle when the particle is closest to the center
(u is a maximum).

The time delay from φ = 0 (the closest approach to the star) to the
location of the transmitter/receiver is then given by (recalling that E/l = ∆)

∆t =
∫ φi

0

∆dφ

(ū+∆cos(φ) +M∆2 sin(φ)2)2 (1− 2M∆cos(φ))
(36)

≈
∫ 1

∆ cos(φ)2
− 2M

(1 + sin(φ)2)

∆ cos(φ)3
+

2M

cos(φ)
dφ (37)

=
1

∆
tan(φi)− 2M

(

sin(φi)

cos(φ)2

)

+ 2M ln

(

1 + sin(φi)

cos(φi)

)

(38)

(This expansion is only valid if cos(φ) >> M∆).
Now, ∆ is determined by the final location of the transmitter/receiver.

Ie, we have

ui = ū+∆cos(φi) +M∆2 sin(φi)
2 (39)

or

∆ ≈ ui

cos(φi)
−Mu2

i

1 + sin(φi)
2

cos(φi)3
(40)
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which gives

∆ti =
sin(φi)

ui

−M sin(φi) + 2M ln

(

1 + sin(φi)

cos(φi)

)

(41)

Note that this differs from the previous expression by the −M sin(φi) term
which is essentially a constant since for ui << ∆ (the emission or observation
point much further away that the point of closest approach), sin(φi) ≈ 1.

If the light starts off at u1, φ1 and ends at u2, φ2 we need that ∆ be the
same for both

u1

cos(φi)

(

1 +Mu1
1 + sin(φ1)

2

cos(φ1)2

)

=
u2

cos(φi)

(

1 +Mu2
1 + sin(φ2)

2

cos(φ2)2

)

(42)

The total angle φ1+φ2 must be the total angle between the receiver and the
emitter. To zeroth order in M, we have

u1

cos(Φ1)
=

u2

cos(Φ2)
= ∆̄ (43)

To next order, we take φ1 = Φ1 + δφ, φ2 = Φ2 − δφ and can find δφ which
will be a term to first order in M.

The total time is now

∆t =
sin(Φ1 + δφ)

u1
+

sin(Φ2 − δφ)

u2
−M(sin(Φ1) + sin(Φ2)) (44)

+ 2M ln

(

(1 + sin(Φ1))(1 + sin(Φ2))

cos(Φ1) cos(Φ2)

)

(45)

To lowest order in δφ (which is proportional toM) we have ( cos(Φ1

u1

− cos(Φ2)
u2

)δφ =
0 so the change in the angle at which the light achieves its angle of closest
approach makes no difference to the time.

This can also be written as

∆t =
sin(Φ1)

u1 +Mu2
1

+
sin(Φ2)

u2 +Mu2
2

+ 2M ln

(

(1 + sin(Φ1))(1 + sin(Φ2))

cos(Φ1) cos(Φ2)

)

(46)

This is not the same as the expression I wrote down before. It differs by
the terms −M(sin(φ1)+sin(φ2)) which is of order M2 if orbit is far from the
r = 2M
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0.4 Large Mass equivalence principle (Nordtvedt

Effect)

One of the questions that arises as far as the equivalence principle is con-
cerned is the ratio of the gravitational to inertial mass for large bodies. It
can be proven that small bodies follow geodesics (if we neglect the self grav-
itational field of a body, the conservation of the stress energy tensor implies
that the body follow a geodesic, if there is no higher multipole moment in-
teraction with the curvature. However, if the self gravitational field becomes
significant (usually phrased that the gravitational potential energy becomes
a significant part of the energy of the body), perhaps the gravitational to
inertial mass ratio is no longer 1.

This has been tested on the moon-earth system. Consider the moon, mass
m, and the earth mass M orbiting the sun. The Lagrangian can be written
, with αm and αM the gravitational to inertial mass ratio of the moon and
earth, M the mass of the sun, ~R the distance from the center of mass of
the earth moon system to the sun, and ~x the separation of the earth moon
system.

L =
1

2
((m+M) ~̇R

2

+ M̄~̇x
2
) + αmαM

GMm

x
(47)

+GM




αmm

|~R + M
M+m)

~x|
+

αMM

|~R− m
M+m

~x|





≈ 1

2
((m+M) ~̇R

2

+ M̄~̇x
2
) + +α2α2

GMm

|~x+ β ~R|
+GM

(

αmm+ αMM

|~R|

)

where

β = (αm − αM)

(

|~x|
|~R|

)3 M
M +m

(48)

(to lowest order in |~x|

|~R|
and (αm−αM)). We can choose the solution such that

|~R| is constant, and |~x| is almost constant– ie the lowest order solution– and

such that the direction of ~R rotates at a rate of once a year (ie much more
slowly than the rotation rate of the moon about the earth). The change of
the direction of R will then be adiabatic. The solution will thus be that the
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moon rotates not about the center of mass of the earth moon system, but at
a displaced point with the displacement pointing toward the sun.

This polarization of the earth moon system has been measured with
the set of corner reflectors left on the moon by the Apollo 11, 14 and 15
missions and the Lunokhod 1 and 2 Soviet Rover missions. With long
term averaging the distance from the earth to the moon with period of
1 year can be measured to less than 1mm when averaged over a months
accuracy and the results are consistant with zero polarization. This gives
αm − αM less than about 10−14 which is much smaller than the differ-
ence in the ratio of the gravitational self energy over the total mass of
the earth and moon. Ie, gravitational energy gravites in the same way
that ordinary energy gravitates. (See the online talk slides by J Müller
http://cddis.gsfc.nasa.gov/lw16/docs/presentations/sci 8 Mueller.pdf)

The Brans Dicke theory would predict that αm − αM would be different
from zero, and this experiment has been the key one to rule out that theory.
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