
Physics 530-11
Numerical technique

0.1 ADM spacetime

Einstein’s equations are horrendously complicated and non-linear. Thus, ex-
cept for highly symmetric situations, finding exact solutions is almost impos-
sible. Furthermore, determining the effects of non-linearities on the solutions
of the equations becomes very difficult. A perturbative solution is hard, not
least because there is no ”small parameter” to expand the solution in. The
coupling constant GN , the Newtonian constant, is not dimensionless, nor is
there any way to make it so. For electromgnetism e2

h̄c
is dimensionaless and

small ( about 1/137), and one can think about doing an expansion in terms of
it. For gravity, GN is dimensionful, and one cannot combine it with the other
constants of nature (like h̄ or c to make a dimensionless quantity. The best

one can do is to get dimensionful quantities, like the Plank length (
√

GN h̄
c3

is
a length, divided by c, a time, etc). None of these is dimensionless. So there
is nothing which one could use as a universal expansion parameter.

Einstein’s equations link the metric through space and time. They are
also coordinate invariant so they also do not produce unique solutions. Rather
then created solution which one can change by doing a coordinate transfor-
mation.

The theory also has problems, like singularities. Thus, for example, the
black hole has only a coordinate singularity at r = 2M , they have a genuine
singularity (where the curvature in any coordinate system, goes to infinity
at r = 0. ) To solve these equations one can transfer them into the usual
initial values, with the Einstein equations determining the time developement
from these initial conditions. It was Arnowit, Deser and Misner who gave the
almost universally accepted way of describing the equations as a combination
of inital data plus temporal equations.

Let us assume that we have divided the spacetime into a sequence of
surfaces of constant time. At present we have no idea what that means,
except each of the surfaces is supposed to be a spacelike surface. That means
that any curve which is restricted to lying within the surface itself has a
tangent vector which is spacelike.

Note that because of the importance of spacelike vectors, one usually, as

1



a matter of convenience, choses the metric to have signature of (-,+,+,+) so
that a spacelike vector has a positive length squared. (We used the other
convention, (+,-,-,-) previously because we were mainly interested in the
motion of particles in the spacetime, and particle orbits are timelike.)

These spacelike surfaces are labeled by a parameter t, and points within
the surface are labeled by three other coordinates, xa. We will use indices
a,b,c,d,e,.. as labeling these spatial coordinates.

For the metric inside this spacelike surface we will use γab(t,x) where x

are the spatial coordinates.
The full metric will be of the form

ds2 = gttdt
2 + 2gtadtdx

a + γabdx
adxb (1)

Now, let us relabel the timelike components as

gta = Na (2)

and call these the shift vectors, while we define

N2 − γabNaNb = −gtt (3)

where γab is the inverse three dimensional metric to γab. N is called the
lapse function, and Na the shift function. Coonsider the vector ni which is
supposed to be orthogonal to any vector inside the surface. Such a tangent
vector to a curve in the surface will be of the form τ 0 = 0, with ta arbitrary.
For the product with ni to be zero, ni will have only a 0 component, and ni =
(gttn0, g

tan0) a perpedicualr vector to the surface will have a displacement
both in time and in spatial coordinate. Let us choose nt = dt the small
coordinate distance between to nearby surfaces.

Let us first define the inverse metric to understand what is going on here.

gtt ≡ g00 = − 1

N2
(4)

gta]equivg0a = ga0 = γab
Nb

N2
(5)

gab = γab − NaN b

N2
(6)

g = det(g) = Ndet(γ) (7)
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(The last expression is one of the main reasons why we chose to define N as
I did) Checking, we have

g0igi0 = g00g00 + g0ag0a = (− 1

N2
)(−N2 +NaN

a) +Na

Na

N2
= 1 (8)

g0igia = g00g0a + g0bgba = − 1

N2
Na +

N b

N2
γba = 0 (9)

gaigi0 = ga0g00 + gabgb0 =
Na

N2
(−N2 +NcN

c) + (γab − NaN b

N2
) = 0 (10)

gaigib = ga0g0b + gacgcb =
Na

N2
Nb + γac − NaN c

N2
)γcb = δab (11)

Ie, gij is the inverse of gij .
Or we can write

ds2 = γab(dx
1 +Nadt)(dxb +N bdt)−N2dt2 (12)

Let us choose ni = α(1, 0, 0, 0) a unit normal to the surface which goes
perpendicularly from the surface t to the surface t+ dt where α is a normal-
ising factor, so that ninjg

ij = 1 or 1 = α2g00 = − α2

N2 . (this is assumed to
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be a timelike vector so with our current definition of the sign of the metric,
it has length squared negative.) Thus we must have α = −N for this to be
a unit vector and for the tangent vector ni to point into the future. Con-
sider the tangent vector to the curve at constant xa from t to t+ dt which is
ti = (dt, 0, 0, 0). The projection of ti to ni is −(tjnj)n

i (the minus sign is so
that the projection of the projection is just the projection). Now, the vector
ti + tjnjn

i is perpendicular to ni so must lie inside the surface. But this is
(dt, 0, 0, 0) + dtN2(g00, g0a) = dt(0, Na). Ie, the vector ti is a combination of
a perpendicualr vector to the surface t=const, plus a displacement along the
surface given by Na. This is called the shift vector, and the perpendicular
component is called the Lapse.

WE can define a covariant derivative with respect to the three metric γab
by DA so that

DaV
b = ∂aV

b +
1

2
γbc(∂aγcd + ∂dγca − ∂cγad)V

d (13)

Also, let us look at the extrinsic cuvature defined by

(∇CnD)(δ
C
A + nCnA) = −KAB (14)

(The tensor

PC
A = (δCA + nCnA) (15)

is the projection into the surface. Consider any tangent vector ki which lies
inside the surface. It is orthogonal to nA, the perpendicular to the surface, so
KAnA−0. And kA(δCA +nCnA) = kC , and nA(δCA +nCnA) = nC +nAnAn

C =
nC −nC = 0.Ie, it projects any tangent vector into the surface. ) The minus
sign in the definition of Kabis a convention, which is used for example by
Misner, Thorn and Wheeler.

The tensor KAB lies in the surface (is orthogonal to the unit vector which
is orthogonal to the surface.) It essentially measures the amount by which
the unit vector orthogonal to the surface splays out or in. If it splays in in
some direction, then kAKABk

B is positive. It is called the extrinsic curvature
because it measures how much the surface is curved in the 4 dimensional
embedding space. It is also a symmetric tensor. because the projection of
the antisymmetric part is zero. PA

C P
B
D (∇AnB −∇BnA). (in coordinates, the

antisymmetric part of the derivative of n, ∇inj −∇jni = ∂inj − ∂jni has at
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least one component which is purely in the tempral direction since ni = Nδ0i ,
which is killed by the projection.

For example a flat sheet of paper rolled into a cylinder has a flat internal
metric (rolling it does not alter the internal distances) but has a non-zero
extrinsic curvature.

The components are

Kab = −∇anb = ∂a(N, 0, 0, 0)b − Γ0
abN (16)

=
1

2N
(∂tγab − ∂bNa − ∂aNb) +

N c

2N
(∂bγac + ∂bγac − ∂cγab) (17)

=
1

2N
(∂tγab − (DaNb +DbNa)) (18)

Kab is a tensor in the 3 surface. and it includes the time derivative of the
three metric.

The Hilbert action for General Relativity is

L =
∫

√

|g|Rd4x (19)

R looks like g(∂Γ − ΓΓ). The first term has second derivatives of the
metric. but is linear in those and they are multiplied by metric components
without derivatives. Ie, the second derivative terms in R look like g∂2g. One
can do an integration by parts in time ( and selectively in space) so as to only
have terms– which look like ∂g∂g– quadratically in the first time derivative
of the components of g. In particular, one finds that there are only time
derivatives of γ and not of the N and Na once on has done this. Ie, the N
and Na act like Lagrange multipliers, not like dynamical variables. While
there are certainly spatial derivatives of both in the Lagrangian, there are no
temporal ones.

One can write the equations in terms of the extrinsic curvature tensor,
or one can write in terms of the momenta πij. In particular, taking the
functional derivative of the Lagrangian with respect to ∂tγab one gets the
conjugate momenta to the metric

πab =
√
γ(−Kab +Kγab) (20)

where K = γabKab is the trace of extrinsic curvature and π = πabγab os the
trace of the momentum.
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Then

L =
∫

πij∂tγij −NH −NaP
a (21)

where one can take πab, γab and N,Na as the independent functions to be
varied Here

H = −√
γ(R)− 1√

γ
(
1

2
π2 − πabπab) (22)

Ha = −2(∂aπ
ab + Γb

acπ
ac) (23)

(πab is a tensor density since it has a
√
γ already contained in its definition.

If it were an ordinary tensor, one would have

Daq
ab =

1√
γ
∂a
√
γqab + Γb

aca
ac (24)

but since π already has the
√
γ the covariant derivative does not require the

exra term.)
The Hamiltonian is then just

H =
∫

(NH +NaH
a)d3x (25)

The variables to be varied are γab, π
ab, N and Na which are all components

of the metric and the time derivative of the metric. If one varies with respect
to N,Na one gets

H = 0 (26)

Ha = 0 (27)

as four of the equations of motion. Ie, if the equations of motion are satis-
fied, the Hamiltonian density is 0. (note that there may still be boundary
terms which are not zero, if the spacetime has a boundary). If one solves
the equations of motion, then H is 0. The energy on any solution is 0. o
These four equations are constraint equations. They restrict the intial data
(values of γab and πab) that one can specify on the surface. This is similar
to electromagnetism, where ∂aE

a = 0 restricts the inital data for Ea one can
choose.

One also does not get any independent equations for N and Na and thus
one can use any values one wants for these. H and Ha do not include time
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derivatives of these quantities. The intial data one would at first suspect
should be γab and π

ab. But the H and Ha are finctions of these quantities on
the initial data surface. Thus one cannot arbitrarily assign these quantities.
One has four constraints which would give four fewer initial data. Thus,
instead of 12 initial data at each point in spacetime, one only has 12-4=8.
Furthermore one can choose 4 functions as coordinate conditions. This leaves
just 4 independent degrees of freedom– 2 metric and two momenta. These
just correspond to the two second order wave degrees of freedom.

Varying these equations with respect to the momenta and the metric, we
get the equations of motion.

∂tγab =
δH
δπab

(28)

=
2N√
γ
(πab −

1

2
πgab) +DaNb +DbNa (29)

∂tπ
ab = − δH

δγab
(30)

= −N√
γ

(

Rab − 1

2
Rγ

)

+
N

2
√
γ
γab

(

πcdπcd −
1

2
π2

)

− 2N√
γ

(

πinπn
j − 1

2
ππab

)

(31)

−√
γ
(

DaDbN − γabDcDcN
)

+Dc

(

πabN c
)

− (DcN
a)πcb − (DcN

b)πca(32)

These are of course highly non-linear equations with loads of terms. But one
can use numerical techniques to find solutions.

Two of the biggest problems in doing the numerical evolution were
a) Finding coordinate conditions.
b) handling the horizons
The first was battled with for many years. One of the biggest problems

was that the coordiantes in general were not causal. Coordinate changes
could travel much faster than light. It seems that this tended to cause insta-
bilities in the evoltion. For at least 20 year people were unable to produce an
evolution which was stable (ie did not crash). Frans Pretorius in about 2006
was the first to solve this problem by using an adaptation of the hamonic
coordinate condition ∂i

√
ggij = 0.. One can also put functions of g and pi

on the right hand side of this equation without altering the fact that the
coordinate changes would travel at the velocity of light. He found a set of
such coordinate conditions which gave stable evolution.
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Handling the horizons was an equally difficult problem. The problem
is that horizons hide singularities, and computers handle singularities very
very badly (crash). But inside a black hole, singluarities develop very rapidly.
Thus inside a solar mass black hole, the free fall time from the horizon to
the singularity is less than 10−5 sec. But outside the black hole, the orbital
period and the propagation of gravity waves is much slower. One can put
a coordinate condition which stops the evolution inside the hole ( makes N,
the lapse function, go to 0 there) but this stretches the coordinate. making
some of the metric coefficients far larger than others– which makes it very
hard to get accuracy. However, if one can use a causal evolution, then we
know that nothing can get of the horizon. One can therefor put on boundary
conditions at the horizon that everything flows into the black hole horizon
and one can throw away the solution inside the horizon.

Once I pointed this out, horizons ceased to be a problem. Other tech-
niques ( moving puncture methods for example) put on coordinate conditions
inside the horizons which make the number of points there very few, and al-
lowed one to handle the singularity as if it were a point source. Again because
of causality the evolution inside the horizon did not really matter.

So now one can follow the evolution of for example two blackholes orbiting
eachother for as long as desired. the insabilities have been tamed.

0.2 Electromagnetic

There is a lot of similarity between the gravitational initial value problem
and the electromagnetic. The electromagnetic Action is

I =
1

4

∫

(∂jAi − ∂iAj)η
ikηjl(∂lAk − ∂kAl)d

3xdt (33)

separating out the variables as A0 = −φ, Aa = ~A, these equations can be
written as

I =
1

4

∫

(−∇φ− ∂t ~A) · (−∇φ− ∂t ~A)− (~∇× ~A) · (~∇× ~A)d3xdt (34)

Note that there is no time derivative of φ in this equation. Thus φ has no
conjugate momentum. There is however a time derivative of ~A, giving as the
momentumΠa = 1

2
∇φ+ ∂t ~A. with the consequent Hamiltonian action

I =
∫

~Π · ∂t ~A− (~Π · ~Π)− 1

4
(~∇× ~A) · (~∇× ~A) + ~P i · ∇φ (35)
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Doing an integration by parts on that last terms it becomes

−
∫

φ∇ · ~Π (36)

Since φ has no conjugate momentum, its variation gives us

∇~Π = 0 (37)

which is a constraint on the intial data. Ie, one cannot specify the intial data
for ~A and ~Π arbitrarily. Instead the constraint means that the initial data
obeys an equation which must be satisfied. ~Π is just 1/2 the electric field.

In this case the Hamiltonian is not just a sum of constraints as it is in
GR, so even with the constraint satisfied, the Hamiltonian is non-zero. There
is a non trivial energy even if the equations of motion are satisfied.

The constaint is also the generator of ”gauge” transformations. Defining
the Poisson Bracket between two operators A and B which are function of
the canonical variables pi, qi by

A,B =
∑

i

∂qiA∂piB − ∂piA∂qiB (38)

One can regard A as performing an infinitessimal cannonical transformation
on B. Thus

δqj = qj, A =
∑

i

(∂piAδij) = ∂pjAδpj = −∂qjA (39)

Under this canonical transformation, B becomes

δB = B,A (40)

Now let us look at the canonical variable

C =
∫

ψ(x̃)∇ · ~Π(x̃)d3x̃ (41)

= −
∫

∇ψ(x̃) · ~Π(x̃)d3x̃ (42)

where the last line is by doing an integration by parts and assuming that
ψ(x̃) goes to 0 on the boundaries.
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It will induce a canonical transformation on ~Π, ~A of

δAj(x) = Aj(x), C =
∫

∂Ai
(x′)Aj(x)

∑

i

∂Πi(x′)Cd
3x′ (43)

=
∫

∑

i

δ(x, x′)δiij
∫

∇iψ(x̃)δ(x
′, x̃)d3x̃ (44)

= −∂xi
Ψ(x) (45)

(46)

and since C is independent of ~A, we have

δ~Π = ~Π(x), C = 0 (47)

This is just a gauge transformation on ~A, and Π is not altered by that gauge
transformation ( which is not surprizing since ~Π is 1

2
~E

The constraints thus generate the ”gauge” transformations. In the case of
gravity, they are closely related to coordinate transformations.The Momen-
tum constraints really do generate spatial coordinate transformations. The
Hamiltonian constraints however generate something similar to time trans-
formations, but it is only on the partial soltuions (πij − ∂tγij + ... are they
really temporal coordinate transformations. The full Hamiltonian is thus the
sum of spatial transformations plus time translations.

Or to put it another way, only on solutions to the equations of motion
can the metric at various times be fit together into a 4 metric.

In the EM case,the equivalent to the Harmonic gauge is the Lorentz
gfauge, with

∂µAµ = 0

which gives an equation of motion for φ. Similarly the Harmonic gauge gives
equations of motion for N and for N i in the gravitational case. The intial
data for N and Na ( as for φ in EM) are arbitrary. Ie, the Lorentz gauge and
the harmonic gauge so not remove all of the gauge freedom.
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