General Relativitiy
Lie derivative

Lie Derivative

In addition to the so called parallel or covariant derivative, there is also
an additional concept called the Lie derivative. This derivative is more pri-
mative than the covariant derivative in that it assumes less structure on the
spacetime.

Assume that we have a series of curves which fill the spacetime. Ie,
through each point in the spacetime, there exists a curve from that series of
curves, going through that point. We can now use these series of curves to
slide the spacetime over itself and to slide any structures on the spacetime
over itself. Let us designate the curve from this series of curves going through
the point p to be designated by 7,()\) and let the value of the parameter
lambda designating the point p to be given by A,. Ie, v,(\,) = p. Now
consider the point in the spacetime designated by 7,(A, + ). This will be a
new point in the spacetime, near the point p. Let the tangent vector to this
curve at p be %.

Now consider a function f(p). Define the Lie derivative of the function,
designated by

£ o f=lim f(rp(Ap +€) = f(p)
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We note that this is just the derivative of f along the curve «, and thus
this is just
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or in coordinates,
Lo f= n'oif (3)

where we define




Now, let us consider the derivative of the cotangent vector defined by
the function f. Ie, we want to define the derivative of the cotangent vector
£ o dfs. We do this by subtracting the cotangent vector defined by the
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dragged function

fe(p) = f(m(Ap — €)). (5)

where 7,(A\,) = p. le, 7, is a curve which goes through the point p and A\, is
the value of the parameter when the curve is at the point p. Note that this
assumes that we have a whole bunch of curves which go through every point
in the neighbourhood of the point we are interested in, and p is an arbitrary
point in that neigbourhood.

We now have the two cotangent vectors df4 and (d fe) 4 defined at the
point p. We can now define the derivative by

dfs(p) — (df.(p))s

€

(6)
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Ie, we define this derivative by comparing the cotangent vector at the
point p with that dragged to the point p by the action of the set of curves.
Writing this in coordinate form, we have

fe(@'(p)) = f(@' (N — €)) = f(a) — e’ 0, f + O(e?) (7)

The components of the cotangent vector are

(dfe(p))i = 0:(fe(p)) = Oif — e’ 0;f) (8)
and the Lie derivative then is
£y = 0P 0;f + 17 0;(0if) (9)

Thus for a generic cotangent vector with components U; we have
£nA U, = 77](% U; + Uj(?mj (10)
We can equivalently define the Lie derivative of a tangent vector by noting

that VAW, is an ordinary function, and thus

0
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LoaVEWp = £< >A VW, (11)
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= (P O;,V" )W; + V' () ;W) (12)

= (njajvi - Vjé?jni)(VVi) + Vi(njﬁjWi + I/Vj@mj) (13)
(f(;a)AW%%V”%—WGKn%%Vi—’V%%W) (14)

8'yp
Thus we define
£,,7A Vi = (’f]]aj Vi — Vj@-ni) (15)
Note that

LyaUP - LyaVP =0 (16)

The Lie derivative of a tangent vector along another tangent vector is
sometimes called the commutator of those two tangent vector fields.

It is very important to note that the Lie derivative is defined without any
notion of metric and without any notion of covarient derivative. It is in many
ways a more primative notion of derivative than is the covariant derivative.
It requires fewer structures on the spacetime to be defined.

It also differs from the parallel derivative in that it is not linear in direction
one is taking the derivative in (ie in the tangent vector to the curve) but also
depends on the tangent vector to the nearby curves (it depends on derivatives
of the tangent vector). There is no tensor (such as V) for the Lie derivative
in some arbitrary direction. You must always designate the vector field along
which you are taking the Lie derivative.

The Lie derivative of the metric is given by

Lnagy = nkakgij + gikajﬁk + gkjaz‘nk (17)
= 0" Okgij + Ojmi + Omj — 1" (Oigx; + Oj ) (18)
= 0jn; +0m; — QUkaij (19)
= O;m; + Om; — 2%, (20)

or
Lyvgap =VaVp+VpVy (21)

Now, if the metric dragged along the curve is identical to the metric
already there, and if this is true everywhere, then the geometry of the space
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dragged over itself is identical to the geometry of the space. this is called a
symmetry of the spacetime. This means that if there exists a vector field K4
such that

Lxagpe =0 (22)

then the vector field K4 is a symmetry of the spacetime. Such vectors are
called Killing vectors.

A 4-dimensional spacetime can contain at most 10 linearly independent
Killing vectors.

Consider the Killing equation components

O;K; + 0;K; = 2T K, (23)

which says that the symmetric ordinary derivatives of the Killing vector can
be written as a function of the Killing vector components themselves. The
we can write the ordinary derivative of the Killing vector as

K, — ;(@Kj _ k) (24)
1
+5 (0 + 0;K) (25)
1
= 5(ain — O K;) + KT (26)

Ie the derivative of K* in the direction j can be written in terms of the
antisymmetric derivative of K and of the value of K at that point.
We can also write the Killing equation as

0. K; = —0;K; + 2K, T}, (27)

Looking at the derivative of the antisymmetric derivative

(0, K; — 0,K;) = 0;(0p K;) — 0,01 K; (28)
= —0,0; Ky, + 0;0: K}, + 20,(T}, K;) — 0;(T3, ) (29)
= 2(0,T,;) — 2(0;T3,) K + 2T},0, K, — 21,0 K, (30)
=2 (9,0}, — 9T} + I, — Tirh, ) K, (31)

+ (Th(0, K, — OK;) — T} (9K, — O K3)) (32)
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Ie, the derivative of the antisymmetric derivative can be expressed in
terms of derivatives of the metric times the components of the Killing vector
plus derivatives of the metric times components of the antisymmetric deriva-
tive of the Killing tensor ( since the ordinary derivative can be expressed in
terms of the antisymmetric derivative and derivatives of the metric times the
components of the Killing vector.). le, we have an intial value equation, in
which if we specify the 4 components of the Killing vector and the six com-
ponents of the antisymmetric derivative of the Killing vector at a point, then
we can integrate them up along all of the coordinate axes, and everywhere
in the spacetime.

It is of course also required that if we integrate up the equations along
different paths, we get the same vector. This is what can reduce the number
of Killing vectors to less than 10, but there can never be more than 10.

Flat spacetime has 10.

ds* = dt* — da® — dy* — d2* (33)
K(1); =(1,0,0,0) (34)
K(2); =(0,1,0,0) (35)
K(3); =(0,0,1,0) (36)
K(4)=(0,0,0,1) (37)
K(5); = (z,—t,0,0) (38)
K(6); = (y,0,-t,0) (39)
K(7); = (2,0,0,—t) (40)
K(8)i = (0,y,—,0) (41)
K(9); =(0,2,0,—x) (42)
K(10); = (0,0, z, —y) (43)

where the (a,b, ¢, d) means that the ¢ component is a, the x is b, the y is ¢
and the z is d.

The first four have zero antisymmetric derivatives at t = x =y =2 = 0,
but have non-szero value for one of the components of the Killing vector at
that point. The last 6 have zero value for all components at t =z =y =2z =
0, but have non-zero antisymmetric derivative there.

Note that any linear combination of Killing vectors with constant coeffi-
cients is also a Killing vector. Similarly the Lie derivative of a Killing vector
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by another Killing vector is, assuming it is not 0, also a Killing vector.

If all the components of a metric are independent of some coordinate, then
that coordinate axis tangent vector is a Killing vector. Eg, let us assume that
gij are all independent of z' the first coordinate. Then if we take the vector
Vi=(1,0,0...) we have

agij
71

fvgij = V’“@kgij + gikﬁj Vk + gjk&- Vk = VI +0+0=0 (44)
since all components of V* are constants, and g;; are independent of z'.

Similarly, the Lie derivative of one coordinate axis tangent vector by
another is zero, since in that coordinate system the components of each
tangent vector are constants and thus have zero derivative.



