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Had Einstein not insisted on the determinant of the metric being the flat spacetime value, he

might well have found the wrong value for Mercury’s precession

I.

In Nov 1915 Einstein published[? ] his preliminary theory of gravity (in terms of Rµν and a few weeks later he
published a paper on the advance of the perihelion of Mercury[? ] in this theory, and his final thoery in terms of what
we now call the Einstein tensor. He found a value of 43 seconds of arc per century for this advance, in agreement
with the 45 ± 5 seconds of arc per second difference between the the measured value and the predicted value from
perturbations by the other planets on Mercury’s orbit. This agreement between the prediction of his new theory and
observation was an strong argument in favour of his theory.
Unfortunately, Einstein had no exact solution to his field equations. Instead he used the linearized equations, a

set of coordinate conditions, and a requirement that the determinant of the metric be equal to 1. His coordinate
conditions were that detg = 1, gtk = 0 (where k goes from 1 to 3).

Unfortunately, his paper is skimpy on details, and he writes his version of the linearized metric by fiat, stating
that it obeys the linearized equation, but giving no derivation, nor does he write his equations of motion. Instead he
”assumes” a solution. Fortunately for him he chose a very particular solution of the linearized equations, one which
corresponds to the linearization of the Schwarzschild solution. There are an infinite set of other solutions, however,
almost all of which lead to different values for the perihelion shift.

Let us write the metric in diagonal form in polar coordinates, with the proviso that it be spherically symmetric.

ds2 = µtdt
2 + 2µddtdr − µrdr

2
− µφr

2(dθ2 + sin2(θ)2dφ2) (1)

where µt, µr, µφ are functions only of r.
These can be written in cartesian spatial coordinates as

ds2 = µtdt
2 + 2µddt

(~x · d~x

r
− (µr − µφ)

(~x · d~x)2

r2
− µφ(dx

2 + dy2 + dz2) (2)

where r2 = ~x · ~x. In the linearized theory, the demand that that the geodesic equations for slow motion of an object
be equivalent to Newton’s gravitational equations led to the linearised solution for µt of µLt = 1− 2M/r. The other
terms need to be determined from the field equations.
The condition he places on the solutions is that they obey detg = −1. He saw this as either a coordinate condition

or a restriction on the solutions. Part of the problem was that he was on the way to altering his field equation as
using the now-called Einstein tensor Gµµ rather than Rµν , which he presented a week later. This also led to his claim
that the Energy momentum tensor must be trace free, a lousy condition for the sun, where, even in the center of sun,
the pressures are less than a thousandth of the restmass-energy density. He justified this condition by an appeal to
the speculation that the matter is all electromagnetic, and electromagnetism has an energy momentum tensor with
zero trace.
In the linearized metric above, the µd off diagonal term was abandoned fiat as one of his coordinate conditions. Even

8 years later, when the discussions with Paine-Levi about his solution occured, who felt that his solution was a disproof
of Einstein’s theory, as one had more than one solution for a spherically symmetric source, Einstein emplasised that
coordinate transformations of a solution are equivalent to the solution. Though recognizing their solutions as valid,
he seems to ignored Paine-Levi and Gullstrand’s identical solutions because they had off diagonal terms in time. That
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he would have also rejected such a solution for his linearised theory in 1915 is not surprizing. It is unfortunate, since,
if one chooses

µLt = 1−
2M

r
(3)

µLd = ±
2M

r
(4)

µLr =
1 + 2M

rµLφ = 1
(5)

which is a solution of the linearized metric, one would have an exact solution for his field equations (Rµν = Gµν = 0.
The linearized solution is also an exact solution. This metric obeys detg = −1 but clearly not that gtk = 0.
Thus, given his apparent prejudice against off-diagonal metrics, let us retain only µr and µφ as unknown functions,

with µLt = 1 − 2M
r . Let us assume that these are functions of only M

r . with µLr = 1 + αM
r and muLφ = 1 + βM

r .

The condition that the determinant of the metric be -1 gives to first order in M
r that 2 − α − 2β = 0. In the usual

way, the geodesic equations give

(
du

dφ
)2 = −

µ2

φ

l2µtµr
(E2

− µt)−
µφ

µr
u2 (6)

where u=1

r , E = µt
dt
ds and l = r2µφr

2 dφ
ds with θ = π/2.

Now, using µtµrµ
2

φ = 1 we can elimnate µφ to get

(
du

dφ
)2 =

1

l2(µtµr)2
(E2

− µt)−
1

(µ3
rµt)3/2

u2 (7)

Linearizing this equation, we get

(
du

dφ
)2 =

1

l2
[(1 + (−4M + 2α)u)(E2

− 1) + 2Mu]− (1 + (3/2α− 1)Mu)u2 = V (u) (8)

Assuming that the orbit is circular allows us to solve dV
du (u0) = V (u0) = 0 for l2 and E2

− 1 in terms of u0, the

inverse radius. Defining u0 as the point were du

dφ2=0
, and perturbing E2

− 1 and l very slightly while preserving
dV
du (u0) = 0, one gets an elliptical orbit where u0 is the mean value of u in the orbit and the closure of the orbit is

when
√

1

2

d2V
du2 ∆φ = 2π. To lowest order in Mu0 this gives

∆φ = 2π(1− 3/2(1− 3α/2)Mu0) (9)

where ∆φ is the angle required for u to go from maximum (perihelion) to the next maximum. Einstein chose β = 0
which gave α = 2 but it is clear that one can have any value for the perihelion advance in this first order approximation
by an appropriate choice of α.
For the Schwarzschild solution, this also gives the solution to lowest order. However, if one changes β = 0 by for

example doing a coordinate transformation on r (eg, r → r + βM/2), one can change β. The linearized metric then
can give an arbitrary perihelion advance. This however changes the second order metric, and in particular, the second
order (in Mu) value of µt and µr. In particular, this changes the u dependence of the first terms in V (u) to give
second order terms. For example, in isotropic coordinates ( which do not obey detg = −1, it is the second order value
of µt which also contributes to the perihelion advance, cancelling the effect of β in the first order expansion. But to
know what the second order terms in the metric are, one needs a way of calculating the second order terms. Not even
having Einstein’s equations for the first order perturbations, it become impossible to know what the second order
calculation would have given him.
Ie, Einstein was lucky in choosing his first order solution (β = 0) to be exactly the first order approximation to the

exact Schwarzschild solution. At the same time he was unlucky in that his apparent prejudice against off-diagonal
temporal terms in the metric prevented him from finding an exact solution before Schwarzschild did.
It is not clear to me how he found the solution which he assumed. In the the last section of the paper [? ] he

presents as a coordinate condition that ∂gαβ

∂xα = 0. His ansatz does not satisfy this equation.

∂kg
kl = ∂k(

2M

r3
xkxl (10)

=
2M

r3
(3xl + δlkx

k)− 3xl xkx
k

r2
xl)) =

2M

r3
xl. (11)


