General Relativitiy
Curvature

Riemann Normal coordinates
Consider a Tangent vector T4 defined at a point. Choose an arbitrary
set of basis vectors E# at that point, so that we can write T4 = #EA.
(Those could be the tangent vectors to the coordinate axes in some coordinate
system). Now define the geodesic throught that point parameterized so that
the tangent vector to the geodesic is T4. Ie, if the geodesic is vy, choose

A . .
the geodesic so that (%) = T4. Define the coordinate y'(yr(1) = t'.

Since the geodesics with tangent vectors uT# for a given T# are all the
same geodesic with parameters scaled by pu, we have that in the y coordinate
system, the geodesic is given by y* = ut'. But then the geodesic equation in
these coordinates becomes

d2yi dyj dyk 0

or
i dy’ dy" i 4k

for all ¢ and thus the I's are 0.
Curvature
Consider two families of curves filling space, such that each set are derived
by Lie dragging one set by means of the other v(\) and 4(u). This means
that the Lie derivative of one set of tangent vectors with respect to the other
is zero.
aA

Now consider

, 1
DDA = DDV = lim s (POBV e 2) = VAO,4)) = (BV4(1,0) = VA(0,0)) (4

—Bu(RVA (i) = V(,0) = BAVA(0, 1) = V4(0,0)) (5)

) 1
= Jm SRRV () = PV (1) (6)



which is clearly linear in V4(0,0) in the limit.
Now,

D\D, VA — D,D\VA =P (VeVpVA = VpVeVA) + £,PVp VA (7)

Since the last term is zero, we have that (VcVpVA —VpVeVA4) is linear in
V4 and is thus a tensor in that argument. We can thus write this as

(VeVpVA = VpVeV?) = RAgepV? (8)
RA5cp is the Riemann curvature tensor.
Thus the components are
ViV,VFE = 0,0,VF + 0p(vi,V') = TL(0VF +T5 V™) + T (9;VE+ T, V™) (9)

Antisymmetrizing over ij and using the symmetery of partial derivatives and
the symmetry of the I' we get

R}, = 0T — ;T + T5 Ty —T% T (10)
Symmetries

The Riemann tensor has a number of symmetries. Firstly it is clear from
the definition that

RApep = —R*sep (11)

Since symmetries of components are symmetries of the tensor itself, we can go
into a normal coordinate system where all the first derivatives of the metric
( and thus all the I's) are zero. Then

Rijkl = gimRijkl = 3sz'jz - ajrikl (12)

where I used that the derivative of the metric was zero, and defined

1
Lije = gimy = §(ajgik + Okgij — Oigji) (13)
This gives
1
Rz‘jkl = 5(31933‘911 + 3z3z‘gkj - alajgz’k - akaiglj) (14)
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This clearly also satisfies
Rijki = Ryij (15)
Rijr + Rigyj + Rajr =0 (16)

Since RapcpVWPBUCXP = Ry VWIU*X!, if the components have
some symmetry (eg (R VWIU*X! = — R, VIWJIU' X in any coordinate
system for arbitrary vectors, then so does the tensor.

Bianci Indentities

Consider

Va(VeVeVP —VeVEVP) — (VeVeVAVE = VeVEVAVP) = VA(RP e VE) — RPpepVaVE
= V(R gpc)V’

Using the third symmetry of R we have
0=Va(R gpc) + V(R pca) + Ve (RP pap) (19)

The left hand side is zero identically since each term cancels with another
term. This is the Bianci identities.
If we define the contracted tensor

Rpp = R 3AD (20)
R = gBDRBD (21)

and contract the Bianci identities between BD and AE and recalling that
Vagpe = 0 we get

g P(VA(RPgpe) + Vp(RPpea) + Ve(RPpap) = VAR e + Vg P RP pea + V(9P RP pap)(22
= VAR + VpREPcuVe(—RPpps = 2V AR ¢ — Vo R(23

Defining

1
Gap = Rap — §9ABR (24)

This becomes

QVAGAB =0 (25)



Note that another tensor which is useful is the completely trace free cur-
vature. In 4 dimensions

1 1
Capcp = Rapep — §<RACQBD — Rapgsc — Recgap + Repgac)) — gR(nggBD — 9apgBC)(26)

which is trace-free. (gACC'ABCD = 0). This is called the Weyl tensor, and
also has the property that if gag = Q%gap, then the Weyl tensor C~’§CD for
the confomally transformed metric gap is the same as for the original tensor
C4pcp defined for gap . Note that Cupep is zero for all dimensions less
than 4. In three dimensions, R gpcp can be written in terms of R4p and in
two dimensions both Rapcp and Rag can be written in terms of R and the
metric alone.
Linearized curvature
Let us write in some coordinate system that

gij = Mij + hij (27)

where the 7;; are assumed to be constants in spacetime, and h;; are assumed
all to be small, so we will keep only terms to first order in the various h;;.
Then

g =il — phyihy, (28)
as can be seen by
& = 9" gk = 1" + 0% hy; — 0F R0 ™ 0 + O(R?) = 0y = &5 (29)

In the curvature, all of the terms that go like I'T" will be second order in A
since Fijk is written in terms of derivatives of the h and thus is first order in
h, and products would be second order.

Also gim Ok} = OkL'yj k-+O(h?) and thus the linearized curvature to lowest
order in h is the same as the above curvture in Riemann normal coordinates

1
Rijkl = 5(8k8]hzlalazh]k — 8k8ihjl — 818jh2-k) (30)
The Ricci curvature is

1 . g %
Rjk = 5(8k83h + Dhij - 8ké)m lhlj — 8]817’] lhlk) (31)
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where h = 7/ hy; and O = 7/ 0;0;
If we write h;; = hi; — %hnij, then we have

1 - _ _
Gij = i(Dhij — 8i81(nlkhkj — 8]-8177”%”) (32)

If 7;; is the Minkowski metric, then O is like a wave equation, and the other
two terms are divergences. Since the small metric cchanges if one performs
coordinate transformations, this gives us hope that perhaps those divergences
can be set to zero, and the then Gj; is just a wave equation. (This is similar

to electromagmetism, where the equation for A%, the vector potential, is of
the form

0A" — n0;0, A% = J' (33)

and the second term can be eliminated via a guage transformation.



