
General Relativitiy
Curvature

Riemann Normal coordinates

Consider a Tangent vector TA defined at a point. Choose an arbitrary
set of basis vectors EA

i at that point, so that we can write TA = tiEA
i .

(Those could be the tangent vectors to the coordinate axes in some coordinate
system). Now define the geodesic throught that point parameterized so that
the tangent vector to the geodesic is TA. Ie, if the geodesic is γT , choose

the geodesic so that
(

∂
∂γT

)A
= TA. Define the coordinate yi(γT (1) = ti.

Since the geodesics with tangent vectors µTA for a given TA are all the
same geodesic with parameters scaled by µ, we have that in the y coordinate
system, the geodesic is given by yi = µti. But then the geodesic equation in
these coordinates becomes

d2yi

dµ2
+ Γi

jk

dyj

dµ

dyk

dµ
= 0 (1)

or

0 = Γi
jk

dyj

dµ

dyk

dµ
= Γi

jkt
jtk (2)

for all ti and thus the Γs are 0.
Curvature

Consider two families of curves filling space, such that each set are derived
by Lie dragging one set by means of the other γ(λ) and γ̃(µ). This means
that the Lie derivative of one set of tangent vectors with respect to the other
is zero.

£ ∂
∂γ

∂A

∂γ̃
= 0 (3)

Now consider

DλDµV
A
− DµDλV

A = lim
µ=λ=0

1

µλ
(Pλ)(PµV

A(µ, λ) − V A(0, λ)) − (PµV
A(µ, 0) − V A(0, 0)) (4)

−Pµ(PλV
A(µλ) − V (µ, 0)) − PλV

A(0, λ) − V A(0, 0)) (5)

= lim
µ=λ=0

1

µλ
((PλPµV

A(µ, λ) − PµPλV
A(µ, λ)) (6)
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which is clearly linear in V A(0, 0) in the limit.
Now,

DλDµV
A
− DµDλV

A = ηCξD(∇C∇DV A
−∇D∇CV A) + £ηξ

D
∇DV

A (7)

Since the last term is zero, we have that (∇C∇DV A
−∇D∇CV A) is linear in

V A and is thus a tensor in that argument. We can thus write this as

(∇C∇DV A
−∇D∇CV A) = RA

BCDV B (8)

RA
BCD is the Riemann curvature tensor.
Thus the components are

∇i∇jV
k = ∂i∂jV

k + ∂k(γ
i
jlV

l) − Γl
ij(∂lV

k + Γk
jmV m) + Γk

il(∂jV
l + Γl

jmV m) (9)

Antisymmetrizing over ij and using the symmetery of partial derivatives and
the symmetry of the Γ we get

Rk
lij = ∂iΓ

k
jl − ∂jΓ

k
il + Γk

imΓm
jl − Γk

jmΓm
il (10)

Symmetries

The Riemann tensor has a number of symmetries. Firstly it is clear from
the definition that

RA
BCD = −RA

BCD (11)

Since symmetries of components are symmetries of the tensor itself, we can go
into a normal coordinate system where all the first derivatives of the metric
( and thus all the Γs) are zero. Then

Rijkl = gimRi
jkl = ∂kΓijl − ∂jΓikl (12)

where I used that the derivative of the metric was zero, and defined

Γijk = gimΓm
jk =

1

2
(∂jgik + ∂kgij − ∂igjk) (13)

This gives

Rijkl =
1

2
(∂k∂jgil + ∂l∂igkj − ∂l∂jgik − ∂k∂iglj) (14)

2



This clearly also satisfies

Rijkl = Rklij (15)

Rijkl + Riklj + Riljk = 0 (16)

Since RABCDV aWBUCXD = RijklV
iW jUkX l, if the components have

some symmetry (eg (RijklV
iW jUkX l = −RijklV

iW jU lXk in any coordinate
system for arbitrary vectors, then so does the tensor.

Bianci Indentities

Consider

∇A(∇B∇CV D
−∇C∇BV D) − (∇B∇C∇AV D

−∇C∇B∇AV D) = ∇A(RD
EBCV E) − RD

ECD∇AV E

= ∇A(RD
EBC)V E

Using the third symmetry of R we have

0 = ∇A(RD
EBC) + ∇B(RD

ECA) + ∇C(RD
EAB) (19)

The left hand side is zero identically since each term cancels with another
term. This is the Bianci identities.

If we define the contracted tensor

RBD = RA
BAD (20)

R = gBDRBD (21)

and contract the Bianci identities between BD and AE and recalling that
∇AgBC = 0 we get

gAE(∇A(RD
EDC) + ∇D(RD

ECA) + ∇C(RD
EAD) = ∇ARA

C + ∇DgAERD
ECA + ∇C(gAERD

EAD)(22)

= ∇ARA
C + ∇DRE

D
CA∇C(−RD

EDA = 2∇ARA
C −∇CR(23)

Defining

GAB = RAB −
1

2
gABR (24)

This becomes

2∇AGA
B = 0 (25)
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Note that another tensor which is useful is the completely trace free cur-
vature. In 4 dimensions

CABCD = RABCD −
1

2
(RACgBD − RADgBC − RBCgAD + RBDgAC)) −

1

6
R(gACgBD − gADgBC)(26)

which is trace-free. (gACCABCD = 0). This is called the Weyl tensor, and
also has the property that if g̃AB = Ω2gAB, then the Weyl tensor C̃A

BCD for
the confomally transformed metric g̃AB is the same as for the original tensor
CA

BCD defined for gAB . Note that CABCD is zero for all dimensions less
than 4. In three dimensions, RABCD can be written in terms of RAB and in
two dimensions both RABCD and RAB can be written in terms of R and the
metric alone.

Linearized curvature

Let us write in some coordinate system that

gij = ηij + hij (27)

where the ηij are assumed to be constants in spacetime, and hij are assumed
all to be small, so we will keep only terms to first order in the various hij.

Then

gij = ηij
− ηikηjlhjl (28)

as can be seen by

δi
j = gikgkj = ηikηkj + ηikhkj − ηikhklη

lmηmj + O(h2) = ηikηkj = δi
j (29)

In the curvature, all of the terms that go like ΓΓ will be second order in h

since Γi
jk is written in terms of derivatives of the h and thus is first order in

h, and products would be second order.
Also gim∂kΓ

m
jl = ∂kΓijk+O(h2) and thus the linearized curvature to lowest

order in h is the same as the above curvture in Riemann normal coordinates

Rijkl =
1

2
(∂k∂jhil∂l∂ihjk − ∂k∂ihjl − ∂l∂jhik) (30)

The Ricci curvature is

Rjk =
1

2
(∂k∂jh + hij − ∂k∂iηilhlj − ∂j∂iη

ilhlk) (31)
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where h = ηijhij and = ηij∂i∂j

If we write h̄ij = hij −
1

2
hηij, then we have

Gij =
1

2
( h̄ij − ∂i∂l(η

lkh̄kj − ∂j∂lη
lkh̄li) (32)

If ηij is the Minkowski metric, then is like a wave equation, and the other
two terms are divergences. Since the small metric cchanges if one performs
coordinate transformations, this gives us hope that perhaps those divergences
can be set to zero, and the then Gij is just a wave equation. (This is similar
to electromagmetism, where the equation for Aii, the vector potential, is of
the form

Ai
− ηij∂j∂kA

k = J i (33)

and the second term can be eliminated via a guage transformation.
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