
General Relativitiy
Bogoliubov and Annihilation operators

Linear norms

Consider a linear Hamiltonian system with Hamiltonian

H =
1

2

∑

ij

(mijpipj + nijqiqj + rij(piqj + pjqi)) (1)

with all the matrices being symmetric, and real, and the usual equations of
motion

ṗi =
−∂H

∂qi
= −

∑

j

(nijqj + rijpj) (2)

q̇i =
∂H

∂pi
=
∑

j

((mijpj + rijqj) (3)

Let q designate a solution for all qi, pi of these equations. Then define an
inner product between two solutions q̃ and q by

< q̃, q >= i
∑

i

(p̃∗i qi − piq̃
∗
i ) (4)

(NOte that some authors define this norm with i rather than i
2
).

The key feature of this norm is that it is conserved in time.

∂t < q̃, q > = i
∑

i

( ˙̃p
∗
i qi + p̃∗i q̇i − ṗiq̃

∗
i − pi ˙̃q

∗
i ) (5)

= i
∑

ij

(−(nij q̃
∗
j + rij p̃

∗
j)qi + p̃∗i (mijpj + rijqj) (6)

−(−(nijqj + rijpj)q̃
∗
i + pi(mij p̃j + rij q̃j) (7)

= i
∑

ij

((−nij + nji)qiq̃
∗
j + (mij −mji)p̃

∗
i pj (8)

+(rij − rji)(qip̃
∗
j + qj p̃

∗
i − q̃∗i pj + piã

∗
j) (9)

= 0 (10)

Ie, this norm is preserved in time for an arbitrary set of solutions.
If we look at < q, q > we note that < q, q >∗=< q, q >. Ie, this is a real

norm even for complex solutions. Furthermore if q is real (ie, all of the qi, pi
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are real functions), then < q, q >=0. Finally, since the matriceesm, n, r are
real, if q is a solutions, then so is q∗, and

< q∗, q∗ >= − < q, q > (11)

Finally,

< q∗, q >= 0 (12)

Thus we find that if q is real, then < q, q > is zero. Thus this is an indefinite
metric on the space of solutions. For every positive norm complex solution,
there exists a negative norm solution.

0.1 Quantization

We quantize this system in the usual way by defining sets of operators
{Qi, Pi} which obey the commutation relations

[Qi, Qj ] = [Pi, Pj ] = 0 (13)

[Qi, Pj] = iδij (14)

Furthermore, in the Heisenberg representation these operators obey ex-
actly the same equations as the classical equations, and let us assume that
we the solution to these operator equations.

Now choose an arbitrary classical solution q, and we can without loss of
generality assume that its norm is +1. (If the norm for the first chosen q is
negative, instead choose q∗, and if the norm is not 1, divide each element of
q by the square root of that norm.)

Similarly the solution q∗ will have norm of -1. Now define the operators

A† =< q,Q >= i
∑

i

(piQi − qiPi) (15)

A =< q∗, Q >= i
∑

i

(p∗iQi − q∗i Pi) (16)

since Pi, Qi are all self adjoint Hermitian operators. Then

[A,A†] =
∑

ij

[(p∗iQi − qiPi), (piQi − qiPi)] (17)

= −
∑

ij

(−p∗i qj[Qi, Pj ]− q∗i pj[Pi, Qj ]) =< q, q >= 1 (18)
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Ie, these two operators have exactly the commutation relation of Annihilation
and creation operators.

Now let us choose a set of such operators qµ such that qµ all have unit
norm, and are all orthogonal to each other

< qµ, qν >= δµν (19)

and such that also < q∗µ, qν >= 0. One can always do this by some form
of the Schmidt orthogalisation procedure. (Pick the first positive norm qµ
and its complex conjugate. Now, choose the subspace orthogonal to these
two vectors. In that subspace, choose another positive norm solution and
its complex conjugate. These are orthogonal to the first pair. Continue this
process until one has a complete set of solutions)

Define

Aµ =< qµ, Q > (20)

A†
µ =< q∗µ, Q > (21)

The commutators will be given by

[Aµ, Aν] =< qµ, q
∗
ν > (22)

which is by construction equal to zero for µ 6= ν and by explicit calculation
is zero for µ = ν.

Similarly

[Aµ, A
†
ν ] =< qµ, qν > (23)

which again by construction is zero for µ 6= ν and is 1 for µ = ν. Ie, we have
a whole set of annihilation operators.

Now, consider the operator H =
∑

µ
µ

2
(AµA

†
µ + A†

µAµ). This operator is
a positive definite operator (

〈ψ|H|ψ〉 =
∑

µ

µ((Aµ|ψ〉)
†Aµ|ψ〉+ (Aµ † |ψ〉)

†A†
µ|ψ〉) (24)

Each of the terms in this expression is positive for any |ψ〉 so the operators
H is a positive definite operator.

Again

[Aν ,H] = µAµ (25)
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and thus if |K〉 is an eigenstate of H with eigenvalue K then Aµ|K〉 is an
eigenstate with eigenvalue K − µ. Again, there must be a maximum value
for the number of Aµ that can be applied, so that the eigenvalue for H not go
negative. Applying and extra Aµ must therefor give the zero vector. This is
true for all values of µ and thus one must have a state |0〉 which is annihilated
by all Aµ.

Note that this state has no real physical significance, since the operator
H was arbitrarily defined in terms of the arbitrarily defined Aµ. However
it does show that for any such definition of the set of solutions qµ, there
exists a special state which has been called the ”vacuum” state for this set of
solutions to the classical equation. One also can call the state A†

µ|0〉 as the
state with a single ”particle” in the mode qµ.

Now consider two such sets of modes, {qµ} and {q̃µ}. We have the two
matrices

α∗
µν =< qµ, q̃ν > (26)

β∗
µν = − < qµ, q̃

∗
ν > (27)

These matrices are called the Bogoliubov coefficients.
We can write

q̃µ =
∑

ν

α∗
µνqν + β∗

µνq
∗
ν (28)

since

αρν =< qρ, q̃ν >=
∑

ν

< qρ, α
∗
µνqν + β∗

µνq
∗
ν > (29)

=
∑

ν

α∗
µν < qρ, qν > +β∗

µν < qρ, q
∗
ν >=

∑

ν

α∗
µνδρ,ν + β∗

µν0 = α∗
µν (30)

as required. And similarly for β recalling that < q∗ρ, q
∗
ν >= −δρν .

Thus

Ãν =< q̃ν , Q >=
∑

µ

αµ,ν < qµ, Q > +βµν < q∗µ, Q >=
∑

µ

αµν + βµνA
†
µ (31)

Looking at the commutation relations between Ã, Ã† we have

0 = [Ãν , Ãρ] =
∑

µ

αµνβµρ− αµρβµν (32)

δνρ = [Aν , A
†
ρ] = αµνα

∗
µρ − βµνβ

∗
µρ (33)
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as conditions on the α and β metrices. These are the Bugoliubov relations.
Let us take the simplest case where we have only one degree of freedom.

Then there is only one pair of annihilation and creation operators but they
depend on the solutions which one uses to create them. Then

Ã = αA− βA† (34)

Consider the vacuum state defined by the A operator|0〉. The vacuum for the
Ã operator. |0̃〉 cam be written as some operator on the |0〉 which can always
be written in the form |0̃〉 = f(A†)|0〉 and the defining equation becomes

0 = Ã|0̃〉 = (αA+ βA†)f(A†)|0〉 (35)

= α[A, f(A†)] + βA†f(A†))|0〉 (36)

But [A, f(A†)] = ∂A†f(A†). (Eg expand f in a Taylor seiries and note that

[A,A†n] =
∑

r

A†r[A,A†]A†(n−r−1)
= nA†(n−1)

= ∂A†A†n (37)

We thus have

∂A†f(A†) +

(

β

α

)

A†f(A†) (38)

which has solution

f(A†) = N e−
β

2α
A†2

(39)

where N is a normalization factor. ie, in terms of the A operators the
”vacuum” |Ã〉 is a sum of pairs of particles. This state is called a squeezed
state.

We want 〈0̃||0̃〉 = 1 so

1 = N 2〈0|e(
β

2α
)2A2

e(
β

2α
)∗2A†2

|0〉 (40)

= N 2〈0|
∑

n

(
β

2α
)n
A2n

n!

∑

m

(
β

2α
)∗m

A†2m

m!
|0〉 (41)

= N 2
∑

n

|
β

2α
|2n

1

n!2
〈0|A2nA†2n|0〉 (42)
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since 〈0|ArA†s|0〉 is zero unless r = s. Also since [A, [A, ....[A,A†r]...]] =
∂rA†A

†r = r! and A|0〉 = 0 we have

1 = N 2
∑

n

(2n)!

22nn!2
|
β

α
|2n (43)

The Bogoliubov relations then tell us that

1 = |α|2 − |β|2 (44)

and thus |β
α
| is always less than 1.

The expectation of ”particle number” is

〈0̃|A†A|0̃〉 = (A|0̃〉)†A|0̃〉 = |
β

α
|2(A|0̃〉)†A|0̃〉 = |

β

α
|〈0̃|AA†|0̃〉 (45)

or

〈0̃|A†A|0̃〉 = |β|2 (46)

Ie, the particle number is just given by |β|2. Similarly

〈0̃|AA†|0̃〉 = 1 + |β|2 (47)

Also,

〈0̃|A2|0̃〉 = −
β

α
〈0̃|AA†|0̃〉 = −

β

α
(1 + |β|2) (48)

〈0̃|A†2|0̃〉 = −
β∗

α∗ (1 + |β|2) (49)

One can also have a two mode squeezed state.

Ã1 = α1A1 + β1A
†
2 (50)

Ã2 = α2A2 + β2A
†
1 (51)

The commutator gives

0 = [Ã1, Ã2] = α1β2 − α2β1 (52)

0 = [Ã1, Ã
†
2] = 0 (53)

1 = [Ã1, Ã
†
1] = |α1|

2 − |β1|
2 (54)

1 = [Ã2, Ã
†
2] = |α2|

2 − |β2|
2 (55)
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From the first third and fourth,

|β1| = |β2| (56)

|α1| = |α2| (57)

and the relative phase between β1 and α1 must be the same as between β2
and α2.

Let us assume that all are real, again for simplicity. One can make them
real by altering the phases of q1 and q2.

The vacuum state for the˜modes is given by

Ã1|0̃〉 = Ã2|0̃〉 = 0 (58)

or

A1 +
β

α
A

†
2f(A

†
1, A

†
2)|0〉 = 0 (59)

A2 +
β

α
A

†
1f(A

†
1, A

†
2)|0〉 = 0 (60)

Again, we can regard A1 as ∂
A

†
1

and A2 as ∂
A

†
2

and get two first order PDEs

to solve. The solution is

f(A†
1, A

†
2) = N e

−α
β
A

†
1
A

†
2 (61)

In this case, A†
1 is always accompanied by and A

†
2 and vice versa. Ie, the

”particles” always come in pairs.
In fact a mixture of single mode and two mode squeezed state is the

generic situation. The general state is a product of two mode squeezed states.
Another point is that two mode squeezed state can be written as a product

of single mode squeezed states.

e−
β

α
A

†
1
A

†
2 = e

− β

2α
(
A
†
1
+A

†
2√

2
)2−(

A
†
1
−A

†
2√

2
)2

(62)

= e
− β

2α
(
A
†
1
+A

†
2√

2
)2
e

β

2α
(
A
†
1
−A

†
2√

2
)2

(63)

where B±
A1±A2√

2
are also annihilation operators for a different pair of modes.

Thus the most general state is a product of single modesqueezed states. Of
course if you are interested in one of the A modes for some reason, the fact
that it can be written in terms of the B modes is irrelevant.
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0.2 Hamiltonian diagonalisation

The above has all been about defining creation and annihilation operators in
terms of a set of positive norm modes, arbitrary sets of such modes. How-
ever, sometimes one is interested in relating the annihilation operators to
something else, like the energy. One can define a set of modes by

∂tpi = iωpi (64)

∂tqi = iωqi (65)

for all i at some time t. One thus has

∂H

∂qi
= −iωpi (66)

∂H

∂pi
= iωqi (67)

which is an eigenvalue equations for the operator

H =

(

r m

−n −r

)

(68)

where the matricesm, n, r are symmetric matrices with coefficientsmij, nij, rij

and H operates on the vector
(

bfq, bfp
)

.

If H is time independent, then these solutions evolve as eiωt, and these
eigenmodes evolve into each other. However if H is time dependent, then
the modes for a fixed ω at different times do not evolve into each other.

Teh ω always come in ± pairs. Defining

S =

(

0 I2
−I2 0

)

(69)

where I2 is the identity matrix of dimension n of the number of degrees of
freedom (I is a 2n dimensional identity matrix). The eigenvalue equation is

0 = det(H− λI) = det(S(H− λI)S) = det(HT + λI) = det(H+ λI) (70)

because m,n, r are all symmetric matrices.
Thus if λ(= iω) is an eigenvalue, so is −λ. While clearly true if ω is real,

it is also true for complex or imaginary ω.
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If we have two solutions with arbitrary eigenvalues λ2, λ2 then

∂t < qλ1
, qλ2

>= (λ∗1 + λ2) < qλ1
, qλ2

> (71)

but since this is zero, we find that < qλ1
, qλ2

> can be non-zero only if
(λ∗1 + λ2) = 0. This is clearly true if λ1 = λ2 = iω for real ω. Ie, the modes
for ω real are normalizable, and orthogonal to each other. For λ real, the
modes qλ have zero norm, but have a non-zero inner product with q−λ and
thus qλ + iqλ and qλ − iqλ are orthogonal to each other and are normalizable
(with opposite signed norms).

If λ is complex, then there are four modes with eigenvalues λ, λ∗, −
λ, − λ∗ which mix together. Each has zero norm, but the cross product of
qλ and q−λ∗ and q−λ and qλ∗ are non-zero. This means that the combinations
qλ ± q−λ∗ and q−λ ± qλ∗ are all orthogonal to each other, and have non-zero
norms. Ie, no matter what the eigenvalues of the ”Hamiltonian”, we can find
modes depending on the eigenstates of the Hamiltonian which can be used
to make creation and annihilation operators for quantization, and the state
annihilated by the associated annihilation operators will either be maxima,
minima, or saddle points of the energy operator.
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