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An extension to all space-time points of the definition of time and of distance for any
observer, accelerating or not, by means of a parallax viewing of events is undertaken.
The twin “paradox” is analyzed in terms of this definition, and it is shown that during
the period of acceleration, the accelerated observer sees the other traveler recede and
go backward in “time.” This motion completely reconciles the calculations both
observers make regarding the reading of each other’s clocks when they meet again.

INTRODUCTION

One of the greatest barriers to the understanding of
special relativity by students is the altered nature of time.
In particular, in their introduction to the subject, it is often
not made clear that there are really two different types of
time for any one observer. There is the time at the position
of the observer as measured by a clock which he carries with
himself, and then there is the time of events which do not
occur at his position, and which the observer must define
by means of some convention. This conventional nature of
times not at the observer’s position is often hidden by asking
the students to imagine all of space filled by friends of the
observer, traveling at his velocity and each carrying a clock.
These friends must then synchronize their clocks by means
of some convention (e.g., by slow transport of their clocks
or by interchanging light signals). Students tend to have
difficulty imagining space filled by clocks and observers and
friends, especially when more than one frame of reference
is used, and especially when accelerations are involved (as
in the twin “paradox’).

The convention I will adopt in this paper is for the ob-
server to measure the time of events at his own position by
means of his own clock, to measure the distance to a far-
away event by measuring the parallax of the light rays he
receives from that event, and to measure the time of that
event by measuring the time of reception of those light rays
and correcting for the propagation delay by using the pre-
viously measured parallax distance and the velocity of light.
This technique has three advantages:

(1) It emphasizes the conventional nature of distances
to and times of events not at the observer’s position.

(2) Itis applicable to any observer, whether inertial or
not.

(3) It requires measurements by the observer only of
angles and times at his own position. Furthermore, unlike
other such techniques, such as radar ranging, it requires
measurement at one instant of time to determine the dis-
tance and time to any event.

Because students find the twin paradox genuinely
puzzling and their confusion about the nature of time is
most acutely displayed in this problem, I will develop the
above ideas in the context of this problem.

TWIN PARADOX AND TIME

The twin paradox has generated one of the longest
standing controversies in twentieth-century physics.! As
it highlights most succinctly the difference between the

589 Am. J. Phys. 49(6), June 1981

0002-9505/81/060589-04300.50

traditional and the special relativistic views of time, and as
it still presents a source of confusion to students, a careful
analysis of the problems which arise would seem to be
useful. In particular, the lack of symmetry between the two
travellers has often seemed to be without cause. This paper
will present a new way of examining the situation, which
will highlight some of the unusual features of special rela-
tivity.

In my discussion of the twin paradox I will assume that
special relativity is the correct description of the physics,
and will show how the view of the situation by the two
travelers can be fit consistently together.

The situation 1 wish to examine is the one in which two
twins 4 and B start off together. In some frame, A4 remains
at rest, suffering no accelerations throughout. B, on the
other hand, travels away from A at velocity v for some pe-
riod of time, suffers a brief period of acceleration which
sends him back toward 4 with the same speed v. When the
two are back together again, they discover that the elapsed
time on B’s clock is a factor /1 — v2/c2 smaller than that
on A’s.

The way in which this argument is often developed is to
say that on the outward journey, 4 observes B’s clock to be
going a factor v/1 — v?/c? slower than his own. Similarly,
on B’s return trip his clock is going the same factor slower
giving a factor of 1/1 — v?/¢? for the elapsed times for the
whole trip.

The paradox is usually stated by asking why B cannot
argue in exactly the same way about 4’s clock. B can regard
A as travelling away with velocity v and thus regard A’s
clock as going slower by a factor of v/1 — v2/c2. On the
return portion, B can again regard A’s clock as going slower.
Why can B not argue that therefore 4’s clock will indicate
an elapsed time a factor of /1 — v2/¢2 smaller than B’s
elapsed time?

The usual explanation is to point out that B suffers ac-
celeration while 4 does not. However, as the acceleration
is assumed to occur for an arbitrarily short time interval as
felt by B, and as the above argument is surely true at all
times when B is not accelerating, the role played by the
acceleration is often left unclear.

The crucial point is that the idea of “time,” which is
straightforward in classical physics, is no longer so in special
relativity. In essence, there exist at least four different times
referred to in the above discussions. Each of the twins, 4
and B, has the time as indicated on his own clock. This time
is directly defined only for that point in space where the
clock is located at that instant in time. However, each twin
must also extend his definition of time to other points in
space by means of some convention. Since the two clocks

© 1981 American Association of Physics Teachers 589



are not always at the same position, A must somehow ex-
tend his definition of time to the place where B’s clock is,
in order to compare that extended time with the reading on
B’s clock at that instant. Similarly, B must do the same in
comparing A’s clock time with his own extended definition
of time.

By using the assumed constancy of the velocity of light,
the extended definition of time can be linked with a concept
of distance. Many such extensions are possible and have
been used in the past. One such is a radar ranging, which,
however, has the disadvantage of requiring two readings of
a clock well separated in time. The method to be outlined
here is local in the sense that the observer only needs in-
formation in an arbitrarily small region of space-time in
order to be able to define the position and time of some other
event in space-time.

PARALLAX DISTANCE AND TIME

When seeing an event, one can determine both the time
when the event occurred, and the point at which that event
occurred by determining the distance to that event by means
of parallax. If two receptors are separated by a distance €
in a direction perpendicular to the direction of travel of the
light from that event, and if the difference in angle of the
receipt of the light rays at the two receptors is ¢, then the
distance to that event may be defined to be

r=¢/0¢,

where I have assumed that e has been chosen so that 6¢
« 1.

The time at which that event occurred can be defined to
be

te=1,—|r|/c

where ¢, is the time of receipt of the light rays and ¢, is the
defined time of occurrence of that event. Note that z, is a
conventional time, and not a time as measured on any
clock.

I will use the above extension of the definition of time and
distance to examine the situation seen by the two observers
A and B.

One relation which will be important in this work is the
the aberration formula.2 As the velocity of light is finite, the
angle of a light ray with some given direction will not be the
same to moving observers. This is an effect which is already
present in nonrelativistic physics. The relation between the
angle ¢ of a light ray with the positive x axis, say, as mea-
sured by a (by definition) stationary observer, and that
angle ¢ measured by an observer moving with velocity v in
the positive x direction is given in special relativity by

V1 = v?%/c?sing
cos¢ + (v/c)
If ¢ is very small, we obtain

~ 1 —v/c
¢~\/1+v/c¢'

while if ¢ is very near m we have
~ _ [l+vyfe
¢ T—\/l—v/c(d’ ).

For two observers at one point, one moving with instan-
taneous velocity v in the positive x direction, events behind

tang =
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Fig. 1. Paths of 4 and B in
space-time and as seen by 4 in
his extended coordinates.

X, xp

\/l—v/c
1 +v/c

nearer than they do for the stationary observer. Similarly,
if an observer suddenly changes his velocity, events in the
direction of his acceleration suddenly appear to be further
away, while events in the opposite direction appear to be
nearer. It is this effect which will be important for eluci-
dating the twin paradox.

Let us set up a detailed situation. We set up an inertial
coordinate system T, X, Y, Z. In this coordinate system 4
travels along the path

X=Y=Z=0.

him will look a factor

As we are assuming the validity of special relativity, the
time ¢4 as measured by A’s clock will be given by

ty=T.
The path travelled by B will be given by (see Fig. 1)
Y=2Z=0,
X=vT 0L<T<T,
X=vQ27-T) T<T<2T.

The time 75 as measured by B’s clock will be given by
tg=+v1—-0%2T

throughout the trip.

We must now let 4 and B set up their extended definition
of times ¢4 and ¢z and of spatial coordinates x4 and xg (we
will concern ourselves only with eventsinthe Y = Z =0
plane and for these events y4 = z4 = yp = zg = 0). See
Table I for the definition of the various times and coordi-
nates.

Let us say that an event occurs at a point with coordinates
T, X in the space-time. The light from this event will reach
A at time

T'=T+ |X - 0}/,
which will correspond to the time on A’s clock of

ia=T =T+ |X|/c.
Let us assume that A4’s receptors are a small distance €/2
above and below the Y = Z = 0 plane in the Y direction.
(See Fig. 2.) The light will reach the upper receptor at an
angle ¢/2]|X| below the X direction, while the light will

reach the other receptor at an angle €¢/2| X| above to give
a total angular difference of

0o =¢/|X|.
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Fig. 2. Parallax definition of distance.

light rays
from event

As A is at rest in this frame, this angle will be the parallax
angle seen by A. A defines himself to be at coordinate x 4
= y4 = z4 = 0. The event will be defined to be at a dis-
tance

7] = €/66 = | X|
away and in the x4 direction, giving it coordinates
X4 =X, ya=90, z4=0.

The time ¢ 4 at which this event occurred is defined to be
ta=iy~|rlfe=T+|X|fc—|X|fc=T.

For A therefore, his time extended to all events, and his
spatial coordinates of any event—both defined by parallax
as described previously—coincide with the space-time
coordinates T, X. (This is in fact true for all directions.)

We can now ask about the relation between B’s extension
of his definition of time and space to all events. Again
consider an event occurring at 7, X, 0, 0. The time of arrival
at B, T”, will depend on whether the light arrives at B be-
fore or after T” = 7. It will arrive before this time if

T—X/c <71(1 -vfc)

for events such that X < uT (i.e., events which lie on the
same side of B as does 4). The time of arrival at B of light
from such events is

T” = (X —cT)/(c + ).

The time £ on B’s clock of the arrival of the light from this
event is then

tg=+1 -0 T”
=+/1=0%/c2(X — cT)/(c +v).
Again B’s receptors are a distance ¢/2 above and below the
Y = Z = 0 plane and the angular difference between the

rays at the two receptors in the Minkowsky coordinate
system is

05 = ¢/|vT” — X|
e(1 +vfc)/(X —vT).

This, however, is not the angle seen by B, due to the ab-
erration effect. The angle 8¢5 seen by B will be given by

A 1 —v/cl+uy/
Spp=eq /el tuc
i e\/1+u/cX—uT

= ey/1 — v2/c2/(X — vT).

B will therefore say that the event is at a distance
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€ X=uT
8¢5 V1 —0%c?

away. In B’s coordinate system he himself is at

77l =

xp=yp=28=0
and he chooses the direction away from A as the +xp axis.
The event at X, T therefore occurs at the coordinate
xg=0—|rg| = afnd) .
V1 =v%e?

The time ¢z when this event occurs is defined by

tg=1p—rgfc

(X —vT)
=1 =02 (X = cT)/(c + V) — ——==
v?fe( )/ (¢ +v) NiET
T — vX/c?
V1 =02
Not surprisingly, this is the Lorentz transformation relation.

A more detailed calculation would show that the full Lo-
rentz relations would apply to all X, Y, Z, T such that

(T—7)= |(X=0oT)2+ Y2+ Z2|12<0

(i.e., inside the past null cone from the turnaround point
at

T=r, X =vr, Y=2Z=0).

For events outside this null cone an identical calculation
shows that the relation between the parallax extended
coordinates ¢g, xg and T,X for points with Y = Z = O are
given by

_ T+ vX/e? — 2w27/c?

t s
N g 77

= X+ o(T - 271)
B VT =0Y?
Again these are simply the Lorentz relations one would
expect.
We can now examine the path of A4 in this extended
coordinate system of B. A4 follows thepathX=Y=2Z =0

with 24 = 7. When A4’s clock reads 1.4, B will place A at the
point ¢, ¥ where

Table 1. Definition of coordinates and times for various observers.
Coordinates
T.X,Y,Z Background Minkowski space-time

coordinates

L4, X4, Y4, 24 Parallax coordinates defined by A4

tp, X8, VB, ZB Parallax coordinates defined by B

14 Time as read on A4’s clock = 4 at

. Xq=yq4=24=0

ta Time as read on B’s clock = 5 at

. xp=yp=z5=0

ta(tp) Time in A’s coordinate system at position
. of B when B’s clock reads 7g

tp(tq) Time in B’s coordinate system at position

of A when A’s clock reads 7 4
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v
Fig. 3. Pathof 4 and B as seen
Ay by B in his extended coordi-
e i nates.
) | ]‘2v2 'ry/cz
- )'=(I~v2/c2)_|/2
Xg
g = et
p =
V1 =0%c?’
- __ ~Ul4

8= V1 =022’
for t, < 7(1 — v/e); while for t4 > 7 (1 — v/c),
i, = ty — 2027/c?
V=g
g = v(ty — 27) .
V1 =02/c?
Before B feels himself accelerate, he does see A’s clock
running slower than his own extended definition of time:

dty = v1-—- 1)2/6‘2 d;
Similarly, after B feels his acceleration, he again sees 4’s
clock go slower by the same factor. However, during the

brief acceleration, B sees A4 act rather strangely. Just before
the acceleration, A4 is at

;B=\/1—v/c, £B=_UT\/1—U/C'

; 1+ /e 1 +ofc

Just after the acceleration, B sees A at

t~3=\/l—v/c_ 27/c? xB=—vT\/1+U/c.
1+v/c V1-0c2’ 1 —v/c

The acceleration felt by B will seem to him to have had the
effect of pushing A further away a distance of

20t
V1 =v?¥c?

and back in time a distance of

IA;Bl =

|Azg| =

027
\/T—_vz/_c_z‘

During this strange behavior of 4, A’s clock will not be seen
by B to run backwards (see Fig. 3). The time seen on 4’s
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clock just after B feels his acceleration will be the same as
that seen just before.

Although on both the outward and inward legs of A’s
journey, as seen by B, A’s clock will go slower by a factor
of v/1 — v?/c2, the additional “time” (as defined by B) that
A has to cover due to the setback at the instant B feels the
acceleration exactly compensates for the slowdown of A’s
clock. The time on A’s clock at their moment of meeting will
be 27, while that on B’s will be v/1 — v2/c2 27, as re-
quired.

We see therefore, that although the standard argument
resulting in the twin paradox is correct in all particulars, it
fails to take into account the rather strange behavior of 4
as seen by B during the brief moment of B’s acceleration.
B does not see A as simply travelling out with velocity v,
turning around, and returning. Rather B sees A4 traveling
outward with velocity v, then suddenly traveling away and
backward in time, and then returning with velocity v.

The above indicates the care that one must at all times
exercise when talking about time and space in the context
of special relativity. It also demonstrates the conventional
(i.e., defined by convention) character of times defined at
locations not at the clock associated with the observer
himself.

The convention suggested here for defining distances and
times not located at the observer by means of parallax offers
the advantage over the more traditional radar ranging
techniques that it is a purely local process, and does not
require the observation at widely separated timies. It re-
quires only that times and angles in an arbitrarily small
region of spacetime near the observer be used. Its only
disadvantage (if that is what it is) is the rather strange be-
havior of bodies as seen by an accelerating observer.
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