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Motion of a body in general relativity* 
Robert Geroch and Pong Soo Jang 

Department of Physics, University of Chicago, Chicago, Illinois 
(Received 26 August 1974) 

A simple theorem, whose physical interpretation is that an isolated, gravitating body in general 
relativity moves approximately along a geodesic, is obtained. 

1. INTRODUCTION 

It is a consequence of Einstein's equation in general 
relativity that the divergence of the stress-energy ten
sor of matter vanishes, i. e., that, in physical terms, 
"locally, energy and momentum are conserved. " One 
might expect, therefore, that it should be true in some 
sense that the motion of a body in the theory must be 
along a geodesic. One would like to prove some theorem 
in general relativity to this effect. The difficult part of 
obtaining such a theorem is apparently the formulation 
of its statement, A physical body is described in the 
theory by a four-dimensional region of space-time: 
What, then, is to be meant by "move along a geodesic?" 
Even the passage to an infinitesimal body does not im
mediately resolve the difficulty, for in this case, al
though one indeed obtains a unique world line for the 
body, the metric would be expected to become singular 
there: What, then, is to be meant by "this world line is 
a geodesic?" 

A number of results suggestive of geodesic motion are 
known. 

It is easily shown that, if the matter consists only of 
dust, then the world line of each dust particle must be 
a geodeSic. This result suggests the following conjec
ture: The world tube of any body contains a timelike 
geodesic. Indeed, this conjecture is known1 to be true 
for the case of a perfect fluid with isotropic pressure. 
Unfortunately, the conjecture is apparently false for 
more general sources. 2 

In an alternative approach to the problem of motion, 
due to Newman and his co-workers, 3 the motion of the 
body is described in terms of the asymptotic behavior of 
its gravitational field. The final equations governing this 
asymptotic field are indeed suggestive of geodeSic mo
tion. It appears, however, to be difficult to interpret 
these equations directly in terms of the appearance of 
the body to observers in its local neighborhood. Fur
thermore, the method is not immediately applicable to 
the case of one body moving under the influence of an
other, since the asymptotic analYSis would require that 
both bodies in this case be regarded as a single system. 
It has been suggested4 that both of these difficulties can 
be avoided, at least for the case of a black hole, by re
interpreting the equations as representing the behavior 
of the gravitational field near the hole. 

A third approach5 involves the passage to the limit of 
an infinitesimal body, i. e., the replacement of the phy
sical body by a "line Singularity" in an otherwise smooth 
space-time. One wishes to show, by analyzing the 
structure of such a Singular world line, that it repre
sents, in some sense, a geodesic. Since the metric it-

self is Singular on this world line, one is forced to in
troduce some sort of averaging procedure. Apparently, 
the procedures available at present may not be indepen
dent of the choice of coordinates. Furthermore, recent 
work6 suggests that there may even be ambiguities al
ready in the attachment, to a smooth space-time, of the 
"world line of Singular points. " 

Finally, we mention an approach due to Dixon, 7 in 
which one introduces a certain world-line within a gravi
tating body, a line which suitably generalizes the New
tonian center of mass. The acceleration of this world 
line is expressed as a sum of integrals over the body, 
where these integrals represent the interaction of the 
mass multipoles of the body with the curvature of 
space-time. Geodesic motion arises as follows: One 
would expect that, for the case of a "small body, with 
little multipole structure, •• these integrals will also be 
small, whence the center-of-mass line will be nearly a 
geodesic. Of course, this formulation gives, not only 
this geodesic limit, but also the motion of a body in de
tail. Consider, for example, an isolated body which is 
spherical and homogeneous, except for a small region of 
higher density, slightly displaced from the center. One 
expects (e. g., from the Newtonian limit) that the center
of -mass world line of such a body will not be a geodesic; 
the present formulation would express this acceleration 
in terms of integrals over the body. Yet external obser
vers would see the body as a whole moving approxi
mately on a geodesic. What one might like to do for this 
example, and what is apparently difficult to do in detail, 
is introduce an "average acceleration" of the entire 
body, rather than an "acceleration of its average 
position. " 

The purpose of this paper is to introduce still another 
approach to the problem of the motion of a body in gen
eral relativity. Our approach differs from those dis
cussed above in one, apparently minor, respect: We 
first introduce a world line, and only then the gravitating 
body, rather than the other way around. One is thus able 
to obtain a theorem which suggests geodesic motion, 
which is general, and yet which is extremely Simple, 
both to state and to prove. The disadvantages of our ap
proach are, first, that the physical interpretation of the 
theorem is somewhat less direct, and, second, that the 
method itself is not well-suited to obtaining any further 
details about the motion of the body. 

2. MOTION OF BODIES 

We first recall some facts about the motion of a body 
in special relativity. 

We represent our body by a nonzero, symmetric ten
sor field T"b, its stress -energy, on Minkowski space 
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M, where this T is conserved: VbT'b=O. Denote by Pa 
and Jab (= J[abJ) those tensor fields 8 on M with the follow
ing property: for any Killing field ~a on M, 

(1) 

where the integral on the right extends over any space
like 3-surface 5 cutting the world tube of the body, i. e. , 
cutting the support of T. By conservation of T and 
Killing's equation, this integral is independent of the 
choice of 50 Physically, Pa and Jab' evaluated at a point 
of M, represent the momentum and angular momentum, 
respectively, of the body about this point as origino 
From the fact that the left side of (1) must be indepen
dent of position, it follows that 

(2) 

This, of course, is the dependence one would expect of 
the momentum and angular momentum on the choice of 
origino 

Now suppose that our T'b satisfies the following 
(strong) energy condition: For ta and t; any future
directed timelike vectors at a point at which T'b is non
zero, T'btat~ is positive, It follows in this case from (1) 
(choosing for ~a a time-translation) that Pa is also time
like and future-directed. Define the center-of-mass 
world line y of the body as the set of points of M at which 
P'Jab = O. It is easily checked from (2) (which can be in
tegrated explicitly) that this y is a timelike geodesic, 
with tangent vector P'. 

There remains only to show that, in some sense, this 
center-of-mass world line y remains "near the world 
tube of the body. " Define the (spatial) convex hull of T 
to be the union of all segments of spacelike geodesics 
having both endpoints in the world tubeo Consider now 
(1), evaluating the left side at a point p of y, using for 
the S on the right the space like 3-plane through p ortho
gonal to P', and using for ~a a boost about P' at p. For 
these choices, the left side of (1) vanishes. But the in
tegral on the right is a positively weighted average, over 
the support of T, of position relative to p. Hence, p 
must lie within the convex hull of To We conclude that 
the geodesic y lies entirely within the convex hull of T. 
In this sense, then, a body in special relatively "moves 
on a geodesic 0 " 

Of course, the above result is not available in the 
presence of curvature, for one does not normally have 
enough Killing fields in that case. Our result is the 
following; 

Theorem: Let M, gab be a space-timeo Let r be a 
curve on M satisfying the following condition: For any 
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neighborhood U of r, there exists a nonzero, symmet
ric, conserved tensor field T'b on M which satisfies the 
energy condition, and whose support is in U o Then r is 
a timelike geodesic. 

The proof consists of noting that "the nearer one is to 
r, the more nearly is the result of special relativity 
applicable." Fix,9 once and for all, a flat metric gab in 
~ome neighborhood of r, such that the metrics gaJ/ and 
gab' as well as their derivative operators Va and Va' co
incide on r. Consider a symmetric T'b having support 
in this neighborhood. For each spacelike 3-plane (with 
respect to g) S, define Pa(5) and <{b(5) by (1), where the 
Killing fields therein refer to g, and where the integral 
on the right is to be carried out over 50 For each 5, this 
Pa(5) and J.b(5) satisfy (2), and so we obtain as before a 
geodesic (with respect to g), y(5) at a point of the con
vex hull (with respect to g) of T. 

Now suppose that T'b is conserved with respect to g. 
Then T'b will not in general be conserved with respect 
to go Iiowever ,_ since the derivative operators coincide 
on r, V bT'b = (V b - V b)T'b can be made as small as we 
wish (relative to the size of T'b) by chOOSing the support 
of T'b to be sufficiently small. Since the difference be
tween the right sides of (1) for two surfaces, 5 and 5', 
is given by fy(V bT'b)~a dV where the integral extends over 
the region V between 5 and 5', this right side can also be 
made as small as we please. That is, the geodesics 
y(5), as 5 ranges over 3-planes, can all be made to be 
as close to each other as we wish. From this and the 
fact that the intersection of each 5 with the convex hull 
of the world tube contains a point of some 'Y (5), we con
clude that the curve r is as close as we wish to some 
geodesic (with respect to g). But this is possible only if 
r is itself a geodesic with respect to g. Since Va = Va on 
r, r must therefore be a geodesic also with respect to 
g. 

Of course, the physical interpretation of the theorem 
is that, for any body, "insofar as that body is sufficient
ly small compared with the curvature that it may be re
garded as a realization of the limit implicit in the theo
rem, then to that extent so may it be regarded as follow
ing some geodesic r. " 

Finally, we remark that the theorem does not conflict 
with the standard (nongeodesic) equations for the motion 
of a spinning body, or of a body with a quadrupole mo
ment. For a body satisfying the energy condition, and 
with spatial extension of the order of 1\ its angular mo
mentum per unit mass and quadrupole moment per unit 
mass cannot exceed the order of Ii and 02

, respectively. 
Thus, for such a body, the effects of angular momen
tum and quadrupole moment on its motion can be made 
to be as small as one wishes by choosing the body itself 
to be sufficiently smalL The theorem, however, asserts 
only that r is a geodesic if "arbitrarily small bodies fol
low r." 
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