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i. THE QUANTUM LIMIT 

As we have heard from Amaldi and Blair in this surmner school, one must eventu- 

ally worry about the quantum mechanical, rather than the strictly classical response 

of gravity wave detectors to an incoming pulse of gravitational radiation. This situ- 

ation, where quantum effects begin to play a role in gravity wave detection, has come 

to be known as the quantum limit [i]. The purpose of these lectures will be to exam- 

ine this quantum limit, to see in what sense it is actually a limit, and to discuss 

techniques for overcoming this limit to the detection of gravitational radiation. 

To set the scene, let me begin by giving a rather loose derivation of the quantum 

limit. Consider a gravity wave detector idealised as in figure 1 as two masses coupled 

by a spring. In the absence of a gravity 

k wave the equation of motion is given by ® ® 
P -I 

Gravity 
I' Wave 

Fig. i. Model resonant gravity wave 
detector. 

x = L + ~x where ~x is small we have 

where x is the separation between the 

masses, and L the "rest length" of the 

spring. The action of a gravity wave 

polarised parallel to the spring is eff- 

ectively to change the effective length 

of the spring, x, to (1 + h)x. (See app- 

endix A for a detailed treatment of this 

approach to the interaction of a gravity 

wave with an antenna). If we assume 

M~X = -k~x - khL 

The term khL acts as a driving force. Taking h to be a pulse of width T with T ~ M~, 

and amplitude ho, we have 

~x -~ ~x COS(Wt + 6) + IX0h cos(60t +6') 
o o 
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where ~x is the amplitude of oscillation in the absence of the gravity wave,6,~' 
o 

are phase parameters depending on the initial conditions and time of arrival of the 

pulse and ~ is gk/M This gives the energy deposited in a stationary bar as 

E ~ k(~Lh T)2 
O 

~ kL 2(eT)2h 2 . 
o 

If we tune the antenna so that ~T ~i, we have maximum sensitivity and 

E ~ --kL2h 2 ~ ----Mg02L2h 2 . 
o o 

taking ~ ~ 104 rad/sec, M ~ 2 x 103 kg, and L ~ 1 metre as typical values for a bar 

type gravity wave antenna, we have 

E ~ 1011h 2 joules. 
o 

The quantum limit is defined as that strength of gravity wave h which makes this 
o 

energy equal to one quantum, ~. This limit is achieved when we have 

h 2 ~ ~e/kL 2 . 
o 

For the parameters given above this gives h ~ 10 -20 . 
0 

To convert this to a maximum distance to which such an antenna would be respon- 

sive, let us assume that h ~ 1 at a radius of one wavelength from the centre of the 

source [2]. For ~ - 10~/sec, and assuming a I/r fall off for h, we obtain 

or 

h = c/er 
o max 

r ~ c/~h ~ 3.1021km ~ 3.108 light years. 
max o 

Since few sources have an h of unity at the source, the maximum realistic radius 

would be reduced by at least a couple of orders of magnitude. 

One of the more promising sources is the collapse of stars to form black 

holes [3]. Assuming the same rate for this as for supernova [4], one would have to 

be able to detect sources in the Virgo cluster of galaxies in order to expect a rea- 

sonable number of events per year. (Most experimentalists are unwilling to wait a 

lifetime for that one possible event). The distance to the Virgo cluster is greater 
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than the above maximum "one quantum" distance. The question that must be answered 

is whether or not it is possible to detect a gravity wave whose strength is such as 

to deposit less than one quanta in a harmonic oscillator detector initially at rest. 

Before continuing, I should point out that this quantum limit has nothing to do 

with any quantum properties of the gravity wave itself. Taking as a measure of the 

quantum properties of a field the number of quanta per cubic wave length, we find 

this to be [5] 

N/X 3 = c2~2h 2/Gh ~ i030 
0 

for h ~ 10 -2o , far above any quantum limit. It is therefore the extremely small 
o 

cross section of such antenna to gravitational radiation rather than any quantum 

properties of wave itself which force one to be concerned with quantum effects in 

the detector. 

In dealing with such a resonant mass gravity wave detector, there are two poss- 

ible points of view. In the first, one concentrates on the gravity wave itself, the 

oscillator acting simply as a transducer and amplifier of the gravity wave signal. 

Although this is in some sense the more fundamental point of view, it has been very 

profitable to concentrate one's analysis on the oscillator itself and assuming that 

the object of the experimental design is to detect the changes produced in the bar- 

oscillator by the gravity wave. As the danger inherent in this approach is that one 

can forget one's ultimate goal, that of detecting gravitational radiation and not of 

measuring properties of the oscillator, I will try to balance both points of view in 

these lectures. 

Before beginning the description of recent works on the quantum limit in refer- 

ence to gravity wave antenna, I would like to look at the classical papers, espec- 

ially those by Beffner [6] and by Haus and Mullen [7] on the quantum noise limits for 

amplifiers and/or transducers. (There is basically no difference between an amplifier 

and a transducer except that in the latter case the output is of a different form from 

the input). 

The argument advanced by Heffner was an uncertainty principle type argument, 

which suffers from the difficulties inherent in such arguments. He began with the 

uncertainty relation between the phase and quantum number of any linear system 

~n ~¢ ~ l/2 

Strictly speaking no such uncertainty principle exists, and one can show that because 
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of the discrete nature of the number operator spectrum, no conjugate Hermitian phase 

operator exists [8]. However, accepting the above relation, one can define a linear 

amplifier as one in which the output number and phase are related to the input number 

and phase by a relation of the form 

n o = Gni + ~n 

~o = ¢i + ~ ' 

where ~n and ~ are assumed to be additive fluctuations introduced by the amplifier. 

One now measures the output number and phase, and from the known amplification 

factor, G, one deduces information about the input number and phase. The output num- 

ber and phase can only be measured to a certain accuracy Ano and A~o , with AnoA~o _> i/2 

Let us assume that an optimal measurement has somehow been made on the output so as to 

make this an equality. If we assume the output number and phase uncertainties are un- 

correlated with the fluctuations introduced by the amplifier, we can deduce the input 

number and phase with an accuracy given by 

Ani2 = (Ano2 + ~n2)/G 2 

A¢i2 = A~o2 + ~ 2  . 

Now, we must have AniA~i ~ 1/2, or else we will have measured the input to better 

than the quantum limit. Therefore we obtain 

(Ano2 + 6n 2) (A~o2 + ~2)/G2 > 1/4 

or 

(1/4 + Ano26~2 + 6n2/4Ano2 + ~n2~2)/G 2 > 1/4 . 

As the accuracy with which we measure the output number An is within the experiment- 
o 

alist's control, we can minimise the l.h.s, of the inequality by an appropriate choice 

of An O. This gives 

Ano2 = i~n/2~[ • 

We therefore must have 

(1/4 + l~n~I + 16n~i2)/G 2 ~ 1/4 • 
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As I~n~l is greater than 0, the l.h.s, is a monotonic function of ~n6~ . In order 

that this inequality be satisfied, I~n6~I must be greater than the positive root of 

the equation 

x 2 + x + (i - G2)/4 = 0 

i.e. 

~n~ ~ (G - 1)/2 . (I) 

The amplifier must therefore add noise to the signal if the amplification G is greater 

than unity. In his paper, Heffner goes on to derive a minimum noise temperature for 

the amplifier under the hypothesis that the noise is additive Gaussian noise. The 

result he obtains is 

T . = ~w/(kln((2G - I)/(G - i))) . 
mln 

Although suggestive, the above analysis leaves a number of questions unanswered. 

Must the noise be additive noise, and could the noise not manifest itself, at least 

partially, as gain fluctuations rather than additive noise fluctuations? (After all, 

the phase transfer function is essentially just the argument of the complex gain, and 

phase uncertainty could therefore arise from gain fluctuations rather than from addi- 

tive noise). Is the phase-number uncertainty valid for very weak signals where n. ~ I? 
l 

What happens when there are many input channels, and in particular when the gain G 

becomes much less than unity (as happens in a gravity wave antenna where the conver- 

sion efficiency or gain of gravity waves to electrical signal is much less than unity). 

Re-examining eq. (I) in the case G 2 < i, we find that ~n~ = 0 is a perfectly accept- 

able solution. Is it true that a poor transducer can be perfectly noise free? 

To answer these questions, a rather more rigorous analysis of an amplifier must 

be undertaken, and fortunately the job has already been done for us by Hans and Mullen 

[7]. My analysis will essentially follow theirs. 

Let us define ~ and ~ as two fields which are coupled linearly by the amplifier. 

We can define in fields ~. and ~. as the fields which would be present in the absence 
l l 

of the amplifier coupling. Furthermore,~ 0 and ~0 are the free out fields which are 

present at the output from the amplifier. The linearity of the amplifier now implies 

that these out fields are Zine~r functionals of the in fields 

0 = ~0 {~i'@i ) 
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0 = ~o(~i'#i ) " 

For linear fields, we can expand ~. and ~. in terms of the free field normal modes[9]. 
1 1 

Regarding ~ and ~ as quantum operators, the coefficients in the expansion will be 

creation and annihilation operator for these~in modes of the field. 

= * 
~i b~ + b % ~e 

where TI,~ are the free positive frequency modes of the field. Furthermore, the 

out fields, ~o and ~0 can also be expanded in normal modes to give the o~t creation 

and annihilation operators, 

o = al~l + a~ ~ 

o = b~ + b~ ~* 

(I will reserve subscripts ~, 8, 7, ~ for ~ and l, ~, ~, p, for ~ modes) 

The linear relation between the out and in fields implies a linear relation bet- 

ween the out and in creation and annilhilation operators. 

t b t al = M+ll,al, + M_ll, al, + M+le,b~, + M_I~, ~, 

t 
b~ = M+C~, b~, + M_c~,b~, + M+~l,al, + M_@I, al, 

where the M's are constant matrix elements, and the summation convention has been used. 

The above M's are not arbitrary because both the in and out annihilation and cre- 

ation operators must obey appropriate commutation relations [I0]. Defining the 

matrix 

(M+o ~ , ) 

(M+I~,) 
= 

(~,) 

(M*_I~,) 

(M+~I,) (M_~,) (M_~I,) 

(M+II,) (M_I~,) (M_II,) 

(M*_~,) CM~,) (~,) 

(M~ll,) (M*- ,) * +l~ (M+II') 

and the two column vectors 
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(b e ) 

(al) 

A = (b~) 

<a~) 

C5 e) 

(E l) 

(~) 

we can write the linear transformation produced by the amplifier as 

= MA • 

Define the matrix P by 

t P = A A (A At) t, 

where the superscript t means the transpose of the preceeding matrix while maintain- 

The commut- ing the order of the quantum operators in any one of the matrix elements• 

ation relations for the in operators imply 

P {: i}o 
where I is the identity matrix. Defining ~ in the same way from the out operators, 

we have 

From the relation between in and out operators we have 

= P = AA t - (AAt) t = MA AtS t - M(A At)tM t t 
=MP M 

The matrix M must therefore preserve the form of the matrix P (i.e. be unitary with 

respect to P.) 

This analysis is very familiar from S-matrix scattering theory [I0]. The amplifier 

or transducer in this case provides the coupling between the various fields being 

measured and the output measuring fields• The unitarity condition on M is just the 

unitarity condition on the scattering matrix [II]. Furthermore, since we are here 

examining linear interactions, the M matrix coefficients correspond to the Bugoliubov 

coefficients in linear scattering theory. 

In the following I will assume that the ~ field is the one which we are attempt- 

ing to measure, while the ~ field represents a field which we are able to measure 
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readily. (I will not analyse how we measure the ~ field [12]). In particular I 

will assume that we are monitoring onlycertain specific ~-modes which I will desig- 

nate with subscripts ~,~, and that this monitoring consists of measuring the number 

of quanta in these modes. The number operator for particles in any one of these modes 

is given by 

NOW, let the state of the system be designated by Ip> and let IO> be the ~n vac- 

uum state. I0> is thus the state in which initially there are no quanta of any type 

present so that 

a Io> = b IO> = O: V~,~. 

The expectation value of N~ can now be written as 

<pt ~IP> =<P1=~= Ip> *<0t~Io>, 

where :N: indicates that N is normal ordered with respect to the ~n annihilation and 

creation operators. The first term is thus zero when Ip> is the vacuum state. The 

second term, on the other hand, is always present, and thus represents a noise term 

which is independent of the input to the system. This noise term is, furthermore, 

obviously additive. 

Writing ~~ in terms of the ~n operators we obtain 

<OI~lO> = <01(M+~ ~ a~ + M*~+~b t~ + M_~ a I + M*~ b ) 

+ 10> X (M+~ a + M+~b8 + M_~ a~ + M_~sb 8) 

= ~ IM~I 2 * zIM_~l 2 , 
X 

where I have used the summation convention overX, ~, ~, 8 in the second expression. 

To relate this to the gain of the system when there are particles in the input 

modes, let us choose Ip> to bea state with n particles in a particular state ~y,. 

We therefore define p> by 

b~, bT, Ip> = nlp> 

a 7 Ip > = b~Ip>-- o, v~,~ ~¥' 
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The first term, <Pl : N~ :Ip> can now be calculated. We obtain 

: 12 
<Pl : N~ IP> = (IM+~y ' + IM-~y '12)n" 

We can therefore define the amplifying factor for the ~' mode to be converted to a 

mode as 

G~, = IM+~I 2 + b_~,I ~ 

Similarly we find the amplifying factor, G~l,, for the ~l' in mode to be converted to 

a ~ mode as 

G~, = IM+~,I 2 + IM_~,I ~ 

The total amplifying factor G~ can now be defined as 

G~ therefore represents the number of particles in the U out mode if there is one 

particle in every one of the possible in modes. 

However, from the unitarity condition on the M matrix we have 

which gives 

6~~ = (~ M* + EM* ~ 

- (Z M*_~X M_~ + ~MI~ M_O) , 
l 

1 = (~ I M+fi~[ ~ + Z M ~ 2 ) 
1 a' +UC~ 

x 

This gives us a relation between the noise and the gain: 

<0[~ 5 I0> = (G 5 -I)/2 

This is precisely the Heffner result. This derivation, however, makes it clearer what 

the amplifying factor G~ means. It is not the amplifying factor for any one possible 
U 
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input mode, but the sum of the amplifying factors for all possible input modes, inc- 

luding the modes we are measuring at the output. It is also clear that G~ can never 

be less than unity.~ Except in the trivial transducer case, in which C~u is unity and 

the amplifier at best converts one quanta into one quanta of a different type, the 

noise will always be non zero. 

This also suggests the procedure which must be followed to minimise the noise which 

is to make %~ and %1 as small as possible for all e or I modes except the one of int- 

erest. The amplifier should be as insensitive to all other modes as possible. An 

ideal situation, for example, would be to design the amplifier so that 

except for the particular mode 5' one wished to measure, and to have 

and finally to have 

M ~- = 1 , +uu 

with all other components being zero. In general, for gravity wave detection, the 

amplifying factor for gravity wave modes is extremely small (of the order of 10 TM or 

less for the usual bar type detector) givin~ an extremely small limit to the quantum 

noise due to the amplification of the gravity wave. This demonstrates that in princ- 

iple at least the so called quantum limit is in fact not a limit to gravity wave de- 

tection. The quantum limit for the usual detector arises because one has not minimised 

the non essential amplifying factors; one has allowed the bar to amplify not only the 

gravity waves but also other non essential modes. 

In order to present a slightly more physical picture of what is happening, we 

notice that G~ can be greater than unity only if some of the M- matrix elements are 

non zero. These matrix elements represent the transformation of in annihilation oper- 

ators into out creation operators. Since annihilation operators are associated with 

positive frequency modes, while creation operators are associated with negative fre- 

quency modes, the linear transformation from the ~n to the out modes must be time 

dependent. We have 

~o(t,x) = /(M (t,t',x,x') ~i (t',x') 
I 

+ M (t,t',x,x') ~.(t',x'))dt'dx' , 
2 i 
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where the transformation matrices M! and M2 (corresponding to M+~I_ and M±~) must be 

time dependent. The amplifier must therefore supply a time dependent coupling of the 

fields to each other if amplification, rather than simply transduction, is to take 

place. 

This allows us to give a simple picture of the physical cause of the quantum noise 

in any amplifier. Since time dependence in nature is the result of dynamic processes, 

the time dependence introduced by the amplifier must be due to some dynamic variables. 

In treating them as classical functions in the interaction produced by the amplifier 

a) 

Amplifier 
(Pump) 
Quanta 

/ 
/ 

Noise ~~ 

b) 

h 

Amplification 

Fig. 2. symbolic relation between amplification and noise in a 
detector. 
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rather than as quantum operators with quantum fluctuations, these dynamic variables 

must be highly excited, corresponding naively to a system with an extremely large 

number of quanta. Each of these quanta couple to the ~ and T states, and can thus 

decay into a ~ plus a T quanta. This decay has a certain natural rate even in the 

absence of any T or ~ quantum. It is this natural decay of these amplifier quanta 

which gives the additive noise (see figure 2a). In the presence of ~ quanta say, 

this decay process is stimulated, and, the more # quanta present, the more rapidly 

the decay proceeds, emitting T quanta at a rate proportional to the number of ~ quanta 

present (fig. 2b). This is the amplification process. However, as first pointed out 

by Einstein [13], the stimulated rate and the spontaneous rate are directly proportional 

to each other. This is what leads to the intimate relation between the amplification 

and noise of any amplifier. 

The above review of the classical papers therefore leads us to the following con- 

clusions. 

1. The amplifier should be designed to couple only the input modes of interest 

to the relevant output of the amplifier. Any additional couplings will in- 

crease the noise without increasing the sensitivity. 

2. The ultimate quantum limit i8 set by the fact that the amplifier can act as 

a source of gravitational radiation. Because there is no way of telling 

whether the output of the amplifier was due to the reception and amplifica- 

tion of a gravity wave pulse, or due to the decay of one of the amplifier 

quanta into a gravity wave plus an output quanta, this process will produce 

an inescapable noise in the output. However, this source of noise is about 

30 orders of magnitude below the naive 'Quantum limit": and can be disreg- 

arded for the present. 

The problem now arises as to how we can design the detector of gravity waves, or 

more specifically, whether and how we can couple to a harmonic oscillator type gravity 

wave detector in order to minimise the coupling of all extraneous inputs to the det- 

ector to the output (and particularly minimise the coupling of the readout system 

itself to the output of the detector). This will be the problem which I will address 

next. 

Before proceeding with the criterion for the development of a detector which will 

evade the naive quantum limit, it may be instructive to examine a semi-realistic det- 

ector model so as to identify the various rather abstract components which I have 

discussed above. The model is that of a laser interferometric readout of a harmonic 

oscillator type gravity wave detector. I will not analyse this system completely, 

but rather point out the essential features. In appendix B a simple harmonic oscil- 
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lator transducer (with G = I) is analysed in detail. 

Figure 3 gives the essential parts of such a readout system. Any motion of the 

1 

Fig 3. Laser interfero- 
meter readout of 
gravity wave det- 
ector. 

oscillator will alter the phase relation of the beams at the beam splitter, increasing 

or decreasing the number of photons measured at the other side of the beam splitter. 

The system is assumed carefully adjusted so that when the oscillator is in its equil- 

ibrium position, all of the returning photons are transmitted back toward the laser 

by the beam-splitter giving no signal at the output. 

The incoming gravity wave is the field ~ which we wish to measure. The interaction 

with the oscillator is linear (the "force" on the oscillator is just proportional to 

the amplitude of the gravity wave). The interaction of the light wave is via the 

mirror. We can model the mirror by a potential V centred at the position, q, of the 

oscillator. Let us assume that the incident light is in a coherent state ~(t,x), 

where we choose ~(t,x) to solve the electromagnetic field equations with the mirror 

at the equilibrium position of the oscillator. 

Now the electromagnetic field E(t,x) will obey a field equation of the symbolic 

form 

O E = V(x - q) E . 

I assume that ~ obeys 
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DE = v(x)E 

Define the readout field, ~, by 

~= E-E 

which obeys 

O~ -- [V(x-q) - V(x)]E + V(x-q)~ 

If the oscillator is disturbed only very little from its equilibrium position, we 

can linearise the above equation 

D~ = v' (x) q E + v(x)T 

This will hold only so long as the expectation value of T remains much less than the 

magnitude of E, (which requires, for example, that the amplitude of oscillation mus£ 

be much less than a wavelength). However, if this linearisation is valid, then T will 

depend linearly on q which depends linearly on the gravity wave. 

Initially the field ~ will be in its vacuum state. Any motion of the mirror will 

create ~ quanta. At the same time, the radiation pressure proportional to ~T will 

produce a back reaction on the oscillator. The system is designed so that thee signal 

is not transmitted along the readout path to the eye. However, some of the T modes, 

being of a different frequency than the E modes (due to the doppler shift produced by 

the moving mirror) and having different phase relations in the two paths of the split 

beam, will be transmitted to the eye and act as the readout signal. 

This system is far from ideal. A detailed analysis which will be presented else- 

where [14], shows that there is a large noise component due to the coupling of the 

readout field T to the oscillator. Essentially this noise can be regarded as due to 

the light quanta in the split beam exerting random uncorrelated ~-function type forces 

on the two sides of the mirror, and exciting the oscillator, which then produces quanta 

in the ~ readout modes. 

This system acts not only as a transducer, but also as an amplifier, with the 

necessary time dependence being supplied by the classical coherent light source from 

the laser. 

II OPTIMAL QUANTUM DETECTION 

The results of the last section have suggested that for a linear detection scheme, 
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one should design the detector system in such a way that the output to the readout 

system should be independent of the readout system itself. It did not, however, sup- 

ply any suggestions as to how this could be accomplished. 

Let us examine the problem from a different point of view first suggested by 

Hollenhorst [15]. Although he uses the language of quantum decision theory [16] , the 

results of interest can be more easily studied using only ideas from elementary quan- 

tum mechanics. 

The object of his analysis is to describe the limits imposed by quantum mechanics 

on the measurement of the changes produced by a gravity wave on the state of the oscil- 

lator. The gravity wave itself is assumed to be a classical force in that all quantum 

fluctuations of the gravitational field are ignored, as is the possibility that the 

detector could generate gravitational radiation. Furthermore, the oscillator is ass- 

umed to be free of interaction with anything else. 

The oscillator is assumed to be in a known initiated state, li>. In the absence 

of any interactions it will remain in this state. The effect of the classical force 

on the oscillator will be to change this state li> to some different state If>. One 

now wishes to determine either what that final state If> is or to determine whether 

or not any change has taken place. Because these two states, If> and li> , are in 

general non-orthogonal, finding optimal answers to these two possible questions will 

be incompatible. In particular, the optimal techniques for determining whether or 

not some interaction has taken place is given by determining whether the system is 

still in the state li> after the action of the classical force. If one finds it is 

not in the state li>, one knows for certain that something has altered the state, and 

that If> is not identical with li>. However, a determination that the system is still 

in the state li> does not allow the conclusion that If> and li> are identical (i.e. 

that there has been no force acting on the oscillator). In particular, there is a 

probability [17] 

p = {<f{i>{ 2 

that the system will still be found to be in the state li> even if If> and li> differ. 

If P is sufficiently large for some choice of initial state li> and for some ampli- 

tude for the gravity wave, then the probability of detecting that a change has been 

produced in the state of the system becomes small, and that particular gravity wave 

becomes undetectable. 

This false-null probability, P, depends both on the initial state li> of the 

oscillator and on the effect the gravity wave has on the oscillator. For a classical 

force, the effect is easily calculated to be 
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If> = exp (i(~q + 8p/~)) i> , 

where p, q are the canonical momentum and position operators for the oscillator with 

Hamiltonian 

H = (p2 + ~2q2)/2 , 

and ~ and 8 are the cos and sin Fourier components of the force at frequency ~. One 

can readily calculate P for any given initial state li>, 

P = I< i l  exp i (~q + 8p) I i> l  2 

Hollenhorst has calculated this probability for various possible initial states. 

For li> the ground state of the oscillator, one obtains 

_(~2+ 82)/2 ~. 
p =e 
ground 

In order that the change produced by the gravity wave be detectable, P must be small, 

from which we obtain 

~2 + 52 ~ 2 ~. 

The classical energy deposited by the force in a bar initially at rest is given by 

E = (~2 + 82)/2, 
r 

from which we obtain exactly the "quantum limit". 

E > ~. 
r ~ 

Hollenhorst furthermore shows that any coherent state [18] gives precisely the same 

result. 

Since the result depends on the initial state chosen, this result can be changed. 

In particular, he calculates the probability P for the energy eigenstates. He finds 

that P decreases roughly as I/n for any given amplitude (~2+82)½ of the wave where n 

is the number of quanta in the initial state ]i> of the oscillator. Figure 4 is ad- 

apted from Hollenhorst to illustrate the dependence of P on n. There P is plotted 

versus ~2+82 for n=0 and n=10. This illustrates explicitly that there is nothing about 

the quantum nature of the oscillator itself which limits the sensitivity of the det- 

ector. One does, however, have to choose the initial state of the oscillator carefully. 
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1.0- 

P 

I 2 3 4 5 6 

( cr 2 + B21 /.Q, 

Fig. 4. Probability of non detection vs. signal strength for oscillator in 
ground state and in I0 quantum state for energy detection coupling. 

As a final example, he also calculates P for a set of states he calls wave packet 

states. These are states which have a minimum uncertainty in that ApAq = ½, but in 

which the wave packet is squeezed in one direction and expanded in the other direction 

in comparison with the vacuum state. The simplest such state is obtained by applying 

the operator 

S(c) = exp - [i~(p 2 + ~2q2)/2~] 

to the ground state, 10>, to give the initial state 

l i> = s(o) I0> • 

In this case one finds the condition 

e~2+e-O82~2 " 

For the correct phase of the force (i.e.82 << ~2) this gives a much improved sensit- 
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ivity over the ground state as the initial state. 

Although Hollenhorst's analysis is helpful, it still leaves some questions unans- 

wered. In particular, how does the measuring process itself affect the above analysis; 

how does one determine li>; and how does one determine whether or not the system is 

still in the state li> after a time. Essentially, his analysis leaves out an analysis 

of the readout system on the oscillator, and the effect of this readout on the state 

of the oscillator. 

The readout system must be coupled to the oscillator. The system must be designed 

so that the state of the readout depends on the state of the oscillator. However, the 

quantum nature of the readout system means that the coupling must be sufficiently 

strong so that the different effects on the readout caused by different states of the 

oscillator can be reliably distinguished. (The readout system suffers from the same 

difficulties as the oscillator itself in that weak effects can lead to a high probab- 

ility of no detectable change in the readout state). A strong coupling of the oscil- 

lator to the readout implies a strong reverse coupling as well, implying that the 

state of the oscillator will also depend on the state of the readout system. 

The quantum nature of the measurement process leads therefore to two difficulties. 

The first is that the change produced by the gravity wave may be too small to be det- 

ected reliably, while the second is that the readout system can affect the state of 

the oscillator itself leading to possible noise. 

The Hollenhorst analysis offers a possible way out of this dilenm~a [19]. In par- 

ticular, the optimal strategy according to him is to measure at later times the pro- 

jection operator li><i[. This operator is time indepedent in the Heisenberg repres- 

entation in the absence of any interaction with the gravity wave. Any change in this 

operator must therefore occur because of some outside influence. This suggests that 

the conclusion one should draw is that for optimal detection of the influence of a 

gravity wave on the detector one should "measure" an operator Z which is time indep- 

endent in the absence of a signal, but which changes with the arrival of the signal. 

The term "measure" in the previous sentence must now be interpreted to mean that the 

readout system must be influenced by such an operator Z which is constant in the ab- 

sence of a signal. In the Schroedinger representation, this implies that 

dZ/dt = ~Z/~t - i[Z,HD] = 0, 

where H D is the free Hamiltonian of the oscillator. That the readout system must 

depend on Z can now be interpreted to mean that the full Hamiltonian of the readout 

plus oscillator must have the form 
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H = H + £Z R+ H 
D R 

where H is the free readout Hamiltonian and R is some function of the readout vari- 
R 

ables. But we now find that Z is still a constant in the absence of any further int- 

eractions with the gravity wave. 

dZ/dt = 3Z/~t - i[Z,H] 

= ~Z/~t - i[Z,HD] ei[Z,Z]R 

= 0. 

If Z is chosen as the Hollenhorst type analysis suggests it should be, then Z turns 

out to be independent of the readout system as well. Any changes in Z discovered by 

its affect on the readout must originate from the gravity wave, and not from the read- 

out system. 

We have therefore succeeded in solving both the problem of readout back reaction, 

and quantum sensitivity at one stroke. All we need do is to find some operator Z 

which is time independent in the Heisenberg representation for the free oscillator 

uncoupled to either the gravity wave or the readout system. We must now couple the 

oscillator to the readout system by means of this operator sufficiently strongly that 

the readout system can unambiguously determine the value of Z (i.e. the eigenstate of 

Z which the oscillator is in). This process will not change that eigenstate. One can 

now calculate, a la Hollenhorst, the probability that a given gravity wave will cause 

the system to change its eigenstate. One can then continue measuring Z to see if the 

state has changed or not. 

There are a number of obvious questions raised by the above, namely: do any such 

Z exist which are sufficiently simple that they can be realised for realistic systems; 

can sufficiently strong couplings be obtained to enable one to unambiguously determine 

Z; and finally, what happens if the real system deviates from the ideal scheme out- 

lined above? 

I will examine these questions one at a time. The simplest, time independent 

operator associated with a free harmonic oscillator is the energy of that oscillator. 

Figure 5 gives an example of a readout system, in this case the pivoted bar connect- 

ing the capacitor and inductor, acting as a readout system for an electric L-C circuit 

oscillator. By adjusting the length of the inductor and of the capacitor gap (or 

equivalently the distances from the pivot to the capacitor and the inductor) one can 

make the interaction between the L-C circuit and the bar via the energy in the L-C 

circuit. In particular we have the electromagnetic energy in the circuit as 
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Fig. 5. Quantum non demolition readout of energy of 
electronic circuit coupled to mechanical bar. 

EEM = q2/2C + W2/2L, 

where ~ is the total flux within the inductor, and is the momentum conjugate to the 

charge q on the capacitor. Now both L and C vary inversely as their length and plate 

separation respectively. The pivoted bar is arranged so that L/C is independent of 

the angle, ~, of the bar. We have as the total energy 

q2/2C(~) + ~2/2L(~) + J2/2I, 

where I is the moment of inertia of the bar, J is its angular momentum and ~ its 

angular displacement. Because of the arrangement, we can write 

c(~) = (1 + f(@))-* c(o) 

L(~) = (i + f(~))-i L(o) 

for some f(~) to give us 

H = H D + f(~) H D + j2/2I. 

If, as in the diagram, f(~) is quadratic in ~ (at least for small ~ ) the frequency 

of oscillation of the bar will depend on the square root of the energy of the L-C 

circuit. A sufficiently accurate measurement of the bar's frequency will therefore 

give the free energy of the circuit (i.e. its energy at ~ = 0). 

In principle, by making I sufficiently small, the bar's frequency can be made 

arbitrarily high, allowing an accurate measurement of that frequency to be made in an 

arbitrarily short time. Thus a measurement of the free energy of the oscillator can 
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be made in an arbitrarily short time. 

As we have heard about the Stanford gyroscope experiments here from Lipa [20], I 

would like to comment that the readout system proposal for that experiment is also of 

this kind. The coupling there is to the London magnetic moment induced in a perfect 

superconducting rotating sphere by means of a wire 10op near the equator of the sphere. 

The voltage around the loop is proportional to the changes in the magnetic moment in 

the direction orthogonal to the loop, which correspond to changes in the angular velo- 

city and thus in the angular momentum in that direction. Now the angular momentum is 

an operator of just the required type, namely, in the absence of interactions with the 

readout, or of other external torques, it is a constant. As would be expected, this 

system is most sensitive to external torques when the sphere has high total angular 

momentum but with the component perpendicular to the loop equal tozero. 

A final simple operator associated with a harmonic oscillator which is constant 

in the absence of interactions was first pointed out by Thorne et al [21]. Essentially 

this is the initial position operator for the free oscillator, 

X = q cos ~t - (p/~) sin ~t. 

Because of the free equations of motion for q and p 

= p and ~ = _~2q 

we have dX/dt = 0 as required. This quantity is therefore a suitable candidate for 

an optimally measurable quantity. 

Is it possible to design a readout system to measure this quantity? The answer 

is yes. Borrowing techniques used in audio microphones we can set up a system as 

shown in figure 6. The movable central plate of a three plate capacitor is mechanic- 

-r 

I Fig. 6. Full quantum 
non demolition 

dQ readout on 
mechanical 

d t oscillator 
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ally connected to the oscillator mass, and a time dependent charge Q(t) is placed on 

this plate. One of the other fixed plates is grounded and the other is connected to 

a loop of wire immersed in a non uniform magnetic field (like the coil of a loud- 

speaker). The flux, ~, through the loop will depend on the position x of the oscil- 

lator mass, and will also be assumed to be time dependent. 

The voltage across the fixed capacitor plates is given by 

V = Q(t)(~+x)/A + 2eZ/A , 
P 

where 2£ is the separation of the plates, the movable plate is centered when the osc- 

illator is in equilibrium, and e is the charge on the ungrounded fixed plate. 

Similarly, the voltage V across the coil will be given by 
c 

V = (d/dt) ~(t,x) + Li = ~#0(t)/~t + [~i (t)/~t]x + #~ (t)dx/dt + Ldi/dt 
c 

where ~0 and ~i are the first two terms in the Taylor expansion of ~, the flux through 

the coil, with respect to x, L is the self inductance of the coil which is assumed to 

be independent of x, and i = de/dt. The total voltage across the capacitor and coil 

is therefore 

V = (Q(t)E/A + 2eE/A + ~ /~t + Rde/dt + Ld2e/dt 2) 
0 

+ (Q(t)/A + ~ /~t)x + ~ (t)dx/dt, 
I I 

where R is any stray resistance in the system. 

The equations of motion for the oscillator are 

M/~ = -kx + Q(t)e/A£ - ~ (t)de/dt - # (t)i. 
1 1 

If we define the generalised momentum and coordinate of the oscillator by 

p = /6~ + ~ (t)e//~, 
1 

we find that the equations of motion for the oscillator are derivable from a Hamilton- 

ian (i.e. p really is the conjugate momentum to q) and the voltage across the capaci- 

tor and inductor are 

V = Q(t)~/A + 2e~/A + ~ /~t + Ld2e/dt 2 + Pde/dt 
0 

+ ~ 2(t)e/M + (Q(t)/A + ~ /~t)x + ~ (t)p. 
I I I 
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,Now let us choose 

(t) = (-f(t)/~)sin ~t 
I 

Q(t) = 2f(t)cos ~t - (I/~)(~f/~t)sin ~t 

where f(t) is some conveniently chosen function. The coupling of the readout to the 

oscillator is then solely in terms of the quantity X = q cos ~t - (p/~) sin ~t as re- 

quired. 

These kinds of couplings via variables of the type X have been extensively analysed 

by Thorne et. al. in a recent paper [22]. Any interested reader is referred to that 

paper for further analysis. 

We have therefore answered the question as to whether or not such optimal readout 

techniques can actually be devised for realistic systems. For further comments on 

the theoretical aspects of these systems, called Quantum Non Demolition Readouts 

(QNDR), the reader is referred to a previous paper of mine [23]. 

We are now left with the other two questions, namely what are the effects of other 

external noise sources on the system (e.g. a thermal bath), and what are the effects 

of a less than optimal readout system? 

The coupling of the detector to other external noise fields will have two effects. 

The first is that these fields will in general tend to damp the oscillator and thus 

alter its equations of motion. The mechanism for this is easily understood. The osc- 

illator will act as a source of these fields if it is coupled to them. However, hav- 

ing created these fields, the oscillator will itself be affected by these fields it 

has created. This back reaction of the oscillator on itself alters the equations of 

motion of the oscillator, primarily by introducing a damping term into the equations 

of motion in the case of simple couplings. Secondarily, these external fields will 

exert forces on the oscillator, either because the states of these fields are popul- 

ated, or because their vacuum fluctuations will drive the oscillator. (These vacuum 

fluctuation driving terms are necessary in order to maintain the commutation relations 

for p, q of a damped oscillator [24]. 

Since the oscillator's equations of motion are affected, quantities which were 

constants of the motion for the free oscillator are no longer constants of the motion. 

Furthermore, the driving terms will act as noise, and unless the gravity wave signal 

is much larger than the noise, the signal will be undetectable. There is no way that 

this noise can be eliminated except by weakening the coupling of the detector to the 
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external fields, and by attempting to reduce the population of the states of those 

fields to as small a level as possible (e.g. decrease the temperature of the environ- 

ment of the oscillator). 

In Appendix C I have analysed a harmonic oscillator detector coupled to external 

damping fields which are thermally populated. It is found there that although the 

noise due to these fields does decrease the sensitivity and increase the probability 

of a false detection, the detection level can still be made much less than the "quantum 

limit", as long as the coupling of the detector to the amplifier is sufficiently str- 

ong, and as long as the measuring time is made much less than the damping time of the 

oscillator. 

In the appendix, the coupling of the oscillator to the thermal bath results in a 

damping of the oscillator, and a shift in the resonant frequency. The quantity corres- 

ponding to q cos ~t - (p/~)sin ~t that one must couple to in the case of an undamped 

oscillator becomes 

: q cos ~t - [(p + oq/2)/~] sin ~t 

instead where ~ is the shifted frequency, and G the damping coefficient. Furthermore, 

this quantity is not strictly conserved by the time evolution of the system. Rather 
-Gt 

this quantity is damped as e by the back reaction of the coupling to the thermal 

bath. In addition, the thermal bath acts as a random force on the oscillator, which 

excites X so that its squared uncertainty 

nX2 = <X2> _ <X>2 

in the short term increases linearly with time. Over time periods which are long 

with respect to the damping time, the equilibrium between the damping and the random 

forces due to the thermal bath lead to 

Ax 2 ~ (TI~ + i12)12~. 

The T/~ term is due to the thermal noise, while the 1/2 is due to the vacuum fluctua- 

tions in the thermal bath. 

Over long time periods, the gravity wave must cause changes in X at least as large 

as AX in order to be detectable, which, for T = 0, is just the usual "quantum limit". 

However, for times much less than the damping time, the random thermal and vacuum 

fluctuations do not have a sufficient time to cause large fluctuations in X, leading 

to an improvement in detection level by a factor of (T/tdamping)% where T is the 
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measuring time, and tdamping is the damping time of the oscillator. This result is 

independent of the strength of the coupling of the readout system to X as long as 

that coupling strength is sufficiently large so that for 

I<X>I = [(1/2~)(T/~ + i/2)T/tdamping] ½ 

more than one quantum is generated in the readout system in the measuring time. In 

other words, the coupling must be suffiently strong sothat a minimum detectable 

change in X has a measurable effect on the readout system. 

Although derived in the appendix for a specific model readout system, and a simple 

model thermal bath, the above results are expected to hold in general for any such 

system. 

The final question one can ask is what is the effect of a non-ideal coupling to 

the readout system? Let us write the Hamiltonian for our model system as 

H = H D + eZR + H R . 

The equation of motion for any readout variable T can be given as 

d~/dt = i[HR,T ] + iEZ[R,T ]. 

Neglecting the natural time development of T (i.e. assuming [HR,T ] = 0)we have that 

the change in T in a time 6t is 

ST = £<Z><i[R,T]>~t. 

By a reading of T one can therefore infer a value of Z by 

<Z> = 6T/(c~t<i[R,T]> . 

Now T has an uncertainty AT giving an uncertainty in the inferred value of Z of 

~Z = AT/(£6t<i[R,T]> . 

But we also have the quantum uncertainty relation in the readout system 

AT AR Z <i[R,T]> , 

from which we obtain AZ > (e~R6t) I 
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NOW, the change in a quantity Y associated with the harmonic oscillator due to the 

interaction with the readout is given by 

6 Y  ~ ie<[Z,Y]><R>~t , 

and the uncertainty in Y caused by the uncertainty in <R> is 

bY ~ £ <i[Z,Y]> bR6t 

> <i[Z,Y]>/AZ. 

This gives us bY bZ > <i[Z,Y]> . 

We see that the two uncertainties in Y and in Z have two conceptually different 

causes. The uncertainty, Az, is caused by an insufficiently strong coupling to the 

readout to allow one to read Z any better than AZ due to the quantum uncertainty in 

the readout. This does not mean that the oscillator is in a state with a spread in 

Z values, only that the readout cannot differentiate well enough. On the other hand, 

the bY is that caused by the uncertainty in the back reaction of the readout system 

on the oscillator. These two uncertainties - the readout and the back reaction uncer- 

tainties - are also related by the usual Heisenberg uncertainty relation. In addition, 

for any state of the oscillator, one has the usual exact uncertainty relations as der- 

ived in most textbooks on quantum mechanics. We therefore see how the quantum uncer- 

tainties in the readout system maintain the uncertainty relations of the measured 

system, as was first pointed out by Heisenberg in his microscope gedanken experiment 

[25]. 

The prescription given for an ideal Q.N.D.R. measurement is that Z is to be chosen 

so that dZ/dt is zero in the absence of any interaction with the readout. This implies 

that Z willnot depend on other conjugate variables whose uncertainty is increased by 

the interaction with the readout. There is thus no limit on the accuracy with which 

Z can be measured. If, on the other hand, Z depended on some other variable Y in its 

time development we would have say dZ/dt = ~Y. Now in a time ~t, Y would become un- 

certain because of its interaction with the readout system by an amount 

bY > < [z,Y]>/bRz, 

where bRZ signifies the readout uncertainty of z. We would have this Y uncertainty 

produce an uncertainty in Z of order 

~ z z ~ ~  ~ AY 6 t  > ~ <[z,Y]> 6t/ ARZ. 
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The total uncertainty in Z, which is a combination of the readout uncertainty and 

that due to the uncertainty of Y, cannot be made arbitrarily small. If one couples 

the readout system to the oscillator more strongly to decrease ARZ , one increases the 

uncertainty due to the back reaction. The total uncertainty 

AZ ~ ARZ + AyZ 

ARZ + ~<i[Y,Z]>6t/ARZ 

has a minimum value 

AZ .> (~<[Y,z]> ~t) % 

For example, if we choose Z to be the position variable q, then Y will be the 

momentum p, and i[Y,Z] is unity, giving us 

Aq ~ (6t) ~ . 

Over measuring time of the order of or longer than the period of the oscillator, we 

find, 

which leads to the usual quantum limit that the gravity wave must produce a change in 

amplitude of at least ~-~ to be detectable. 

On the other hand, even if one does not demand exact quantum non demolition readout 

(QNDR), where the quantity readout is a constant of the motion, one can still do much 

better than this quantum limit. An example of such an approximately QNDR quantity is 

the time average of 2q cos ~t . We have 

f2q cos~t dt = f(q cos~t - (p/~)sin ~t) dt. 

By coupling to the time average of 2q cosg~t one should be able to do almost as well as 

by coupling to the constant quantity q cos~t - (p/~) sin~t. This will be true, however, 

only if the readout system does not perturb this time averaged quantity. 

Using Z = 2q cos~t, we have 

d2Z/dt 2 = -~sing~t + ER cos~t. 
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As we are averaging Z over a number of cycles, it is only the low frequency components 

in the above equation which will be of importance. Therefore, we must design the coup- 

ling so that the readout system sees only the time averaged value of Z, and so that the 

oscillator sees no components of the readout system with frequency near ~. 

As an example, let us look at the capacitive readout described earlier as a part 

of an exact system and use it on its own. We must prevent any noise source from driv- 

ing the oscillator near frequency ~. At the same time the output from the readout is 

to be a time average of 2q cos~t. 

- " C L 

i. N VN 

Fig. 7. Time averaged approximate quantum non demolition capacitive readout 
on mechanical oscillator. 

The design is described in figure 7, with a charge 

Q(t) = Qo cosset cOS~ot 

imposed on the center plate of the capacitor system. The voltage across the outside 

capacitor plates is 

V = Q(t) I/A + 2e~/A + Q(t)q//MA 
P 

The Fourier transform of Vp is (for ~> o) 

Vp(~) = (2XQo£/4A) [~(L0-~0o-~) + 6(~0-~o+~) ] + e(c0)~/A 

+ wfd~' [~(~'+~o ) + ~(~ ' -~o) fd t  q( t )  cos~  exp i ( ~ - ~ ' ) t ]  

For ~ near o3 , the last term is proportional to the time average of q cos~t. It is 
o 

therefore only the components of V near ~ which are of interest. The filter must 
p o 
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therefore be designed to let through only these components. 

From the equations of motion for the oscillator, one finds that the time averaged 

value of q cos~t is essentially independent of the components of e(~) near ~ . The 
o 

filter must therefore be designed so as £o ensure that e(w) has components only near 

the frequency ~ in order to minimise the effect of the readout noise on the quantity 
o 

being measured. Following Thorne et al., the possible noise sources, whether due to 

quantum zero point fluctuations, or to thermal effects, are assumed to originate as 

voltage and current sources at the input to the amplifier representing the rest of the 

readout chain. The charge components e(~) are given by 

e(~) = [2Q(~)/c + (Qq) (~)/c + iNR + VN] 

x [iw(R + i/iwC + i/i~ + iwL)] -I 

where C is the capacticance of the two fixed readout capacitors, and (Qq) is the con- 

volution of Q and q. 

Choosing C sufficiently small (<<C) and choosing L = ~o2/C, the charge on the 

capacitor due to the noise terms, i N and VN, will be concentrated at ~= ~0 as required. 

Furthermore, the output voltage at the amplifier due to the motion of the oscillator 

is given by 

V . = [(Qq) (£0)/C] [R + 1/i~C + i/i~ + i~]-l. 
slg 

Because of the peak in the denominator at 0J= ~ , the signal voltage will be proport- 
o 

ional to the time average of q(t) cos~ t as noted above. This system will therefore 

be an acceptable approximation to an optimal readout system, with a minimum detectable 

signal much below the quantum limit. For further analysis of systems of this type, 

see the papers by Thorne et. al. 

Thus we see that although ideal measurement techniques are not that difficult to 

achieve, even approximate techniques can do better than the "quantum limit". 

III CONCLUSION 

The quantum mechanics of gravity wave detectors places restrictions on the methods 

one can use to detect gravity waves. The most naive techniques lead to limits on the 

sensitivity of the detector due to the effect of the readout system on the oscillator. 

However, by choosing the coupling between the readout system and the oscillator app- 

ropriately, the effect of this feedback on the measurement can be eliminated. 

This paper has not discussed the more stringent requirement on a system designed 
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to not only detect the gravity wave but also to predictably infer the form of the 

wave which has caused a given change in a detector (something I have elsewhere called 

Q.N.D.R.). It has not addressed the theoretical problems inherent in designing a 

time dependent coupling. It does, I hope, provide an introduction to a way of think- 

ing necessary to design and analyse detection systems in theregime where the quantum 

properties of the detection system become important. 

APPENDIX A 

I would like to present here an alternative method for looking at the interaction 

of a gravity wave with a solid body from that given for example by Misner, Thorne and 

Wheeler [26]. Although the analysis I will present is not new, [27], it does not seem 

to me to be widely known. 

In the traditional analysis, the effect of the gravity wave on the detector is 

looked at as an effect of a tide producing force. The Riemann tensor of the gravity 

wave acts to produce a force on each particle within the detector which sets it into 

motion. In particular this force is equal to 

F. = - R X j . 
l oioj 

For a detector made of isotropic material with Lame coefficients ~,l the equations of 

motion for a displacement ui from equilibrium are given by 

"" " X Ou i = ~V2u i + (~+~) (u3,j), i -0Roioj i 

(I have used the latin indices to designate the spatial components of any tensor. The 

summation convention is then over index values 1-3 and raising and lowering is done 

via the Euclidian spatial metric). 

There exists another method for the analysis of the interaction. It essentially 

involves working in another coordinate system, the geodesic coordinates rather than 

the isometric coordinates of the above analysis. In particular I choose the coordin- 

ates in Which the gravitational wave has its usual transverse traceless form [28]. 

Defining the gravity wave perturbation by 

we have 

h ~v = gDi'J - ~v ' 

hol ~ = O, 

h.. - V2h.. = 0 , 
13 J-3 
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h i i = hi3'j = 0. 

In this coordinate system, a free particle initially at rest remains at rest even 

during the passage of the gravity wave [29] It is thus an inertial coordinate sys- 

tem in that a particle will move only if acted on by external (non-gravitational) 

forces. 

The effect of the gravity wave is to change the distances between particles. Now 

if the particles are part of a solid body, the interparticle spacing is determined by 

quantum effects (essentially by the competition between the Fermi exclusion principle 

and electromagnetic attractions). If the distances between particles changes, the 

equilibrium is upset and the particles begin to apply forces on each other, causing 

the body to begin to move. It is therefore the response of the body itself to the 

changes in metric caused by the gravity wave rather than any forces of the gravity 

wave on the matter which excites the detector. 

Let us define ui(x) to be the displacement of the particle at x from the point x. 

Using standard elasticity theory, we define the strain within the body as the differ- 

ence in distance between adjacent particles from their equilibrium distance. This 

change will be due to two causes, the presence of the gravity wave, and the relative 

displacements of the particles. The strain tensor E.. becomes 
13 

£ij = (ui, j + uj, i + hij)/2 

By the usual Hook's law assumption, the stress and strain are linearly related. For 

an isotropic material we have [30] 

k ~. . 
O ij = 2~ Ei3 + A E k lj 

There are now two stresses, which I will call ~D and ~G' due to the displacements and 

due to the gravity wave. 

ij = OD ij + ~G ij 

k~. 
GGij = ~hij + A hk lj 

= ~/hij 

The equations of motion for the material in the body is 

P ui = Gi 3'j = ODi 3'j + ~ hi3' j = ODiJ,j . 
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We therefore note that within the body the equations of motion are identical with 

what they would have been in the absence of the gravity wave. The only effect of the 

wave then comes in the boundary conditions at the surface. We have 

~.. n j = 0, 
z3 

where n i is the unit normal to the surface. This gives us 

n j = -~ h..n j . 
D ij 13 

The gravity wave therefore acts like a surface traction on the body. Note that 

it acts only via ~ , the shear modulus of the material. A material unable to sustain 

shears is therefore a poor candidate for a gravity wave detector. 

To link this approach with the tide-producing-force approach, define 

u. = u. - h.. x j 
z z z3 

with the origin of the coordinates somewhere within the body. Furthermore, assume 

that all spatial derivatives of h.. are negligible (i.e. that the wavelength of the 
z3 

wave is much larger than the dimensions of the body). We find 

P ui = ~ v2 ~'z + (~+~) uJ'j'i + p Hij xj 

which is equivalent to eq. A.I. Furthermore, the boundary conditions on 

D ij = ~ (ui,j + ~'3,z ") + ~ uk'k~ij 

are given by 

~Di j nj = 0 

The relation between the two viewpoints is thus simply a change of coordinates. 

It is, however, instructive to note that the usual expression applies only to the 

long wavelength limit. Furthermore, the explicit dependence of the motion of the 

body on only the shear modulus of the material is far from obvious in the usual anal- 

ysis of the interaction. 

APPENDIX B 

In this appendix I will present a simple solvable model of an oscillator type 

gravity wave detector. 
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To make it somewhat realistic, the oscillator will be damped and will be in a 

thermal bath of temperature T. The readout system will be via a coupling to an exter- 

nal field, and will be a time independent linear coupling so that the oscillator will 

serve only to convert gravity wave quanta into readout quanta. This simple model will 

be used to demonstrate explicitly the relation between the Q of the oscillator and the 

signal to noise ratio, and the effect of coupling to the readout system on the signal 

to noise ratio. 

The model will assume that the "gravity wave" is a massless, two dimensional scalar 

field ~(o)" The thermal bath and the fields, #(i)' i>O, which damp the oscillator 

will also be two dimensional scalar fields, as will be the readout field, T. 

The Langrangian action of this model system is given by 

/{¢1/2)~ [~2¢i  ) - ¢ ~ ¢ i ) / ~ x ) 2 1  + [ ~ i ~ ( i ) q  + ~2/2 - a2q2/2 + ~q~l ~¢x) 

[~2 - (~TI~x) 2]I2} dx dt + 
i 

The equations of motion for this system can be solved exactly. In particular, 

the readout field ~ depends on the ~n fields #(i)I and ~I (which obey the two dimen- 

sional massless wave equation exactly). We have 

~(t,x) = ~i(t,x) - (~/2) (q(t-x)@(x) + q(t+x) ~(-x)), 

where q(t) is best expressed in terms of its Fourier transform 

q(~) = /e i~t g(t) dr. 

The equation of motion for q(t) is 

+ (E e(i)z + 82) ~/2 + ~2 q 
i 

= Z ~i $(i) I (t'°) + 8 ~I (t,o) 
i 

which is the equation of a damped harmonic oscillator, with the /~ 

acting as forces on the oscillator. The solution is 

+i~(~ ~ ~(i)i(~,o)+ 8 ~i(~,o)) 
-i q(~) = + 

~2 + i~ (E ~.2 + BL)/2 _ ~2 
1 

i 

and ~ fields 
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Let us now assume that we are observing the ~ field at the point x=0. 

of the Fourier transorm of ~ at this point is then given by 

i8~ (~ ~i ~(i)I(~'°) + 8~I ( ~ ' ° ) ) _ _  -- _ 

~(~) = ~z (~'°)- -~- ~2+ i(Z ~ + 8 2 ) ~12-~ 2 
i I 

The value 

As T(~) depends only on #i(~,o) and ~i(~,o), there is no mixing of positive or negative 

frequencies from the in to the out states. This system therefore acts as a pure trans- 

ducer with no amplification. 

Note that the damping of the oscillator itself arises out of the back reaction of 

the emission of quanta into the various ~(i) fields and the readout field. The net Q 

of the oscillator therefore depends on both the strength of the coupling to the thermal 

bath, the "gravity wave" and to the readout field. For optimal detection one would 

expect that 8 should be sufficiently large that the oscillator decayed predominantly 

via emission into the readout channel, rather than into the thermal bath. 

In order to proceed with this analysis, we need to design a detection strategy. 

Let us assume that one measures the number of particles in some mode of the T field 

at x=0 which averages the output over some time period Y. The number operator will be 

of the form 

N = C%C 

with 

c = f (~12~) % c(~) T(~)d~, 
~>0 

and f I c(~) [2 d~ = 1 
~>o 

where Ic(~)[is a smooth function of width I/T centered at ~0=~ . The normalisation 

factor occurring in the d~finition of C is appropriate for a two dimensional scalar 

field. 

We now wish to calculate the expectation value of N under the assumption that the 

~(i)I states'with i>o are thermally populated with temperature T which gives 

% 

< ~ (i)I (~'°) ~(i)I (~''O) > ~>o = 2~(2T/~2) ~ij ~(~-~')" 

(The extra factor of 2 arises because there are #. modes travelling in both directions). 
1 

The g r a v i t y  wave ,  ~ ( o ) I '  i s  a s s u m e d  t o  c o n s i s t  o f  a p u l s e  w i t h  a b r o a d  f r e q u e n c y  s p e c -  
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trum including the frequency ~ of the oscillator while the readout field is initially 

in the vacuum state. I will further assume that the measuring time T is less than 

the decay time of the oscillator. 

We obtain 

£0>0 (C02-22) 2 +(EC~2+~2) 2 (02/4 
i i  

where we define 

D = i / ~  c(0J) ¢(o)I (~0,o) 03 d(~ 

o C02+i0~ (~.~2+82)/2_22 
1 i 

The integrals will be dominated by the pole near 0>22 . We therefore obtain 

<N> z 2 IBI I%I = Ic¢  1 <¢ o xCe,0) 

=lel'¢i .o %')Icca  l'¢2T/a  
+ t 

4 (i ~" C¢2i + 821 

The first expectation value is just the number quanta in the incoming wave at fre- 

quency ~ , i.e. 

< CT(o)i (2,0) ¢(o)i(2,0) > ~- 2__~ n(2) 
2 

to finally give 

< N > = ( 1 / 2 i ) ~ 8 2 1 c ( 2 ) 1 2  [1~ol  n (2 )  + 

The signal to noise ratio is now given by 

Z C ~ T / ~ ) / C Z ~  + 82)] 
i>o ± i l 

SIN = u02n(2)(Ze 2 + 82)/iZ e.2(T12). 
i >0 i 

We see that the larger [821 is (i.e. the stronger the coupling to the readout), the bet- 

ter is the signal to noise ratio. The essential reason is that the thermal fluctuations 

do not have a chance to build up the amplitude of oscillation before they decay. On 

the other hand, the gravity wave impulse will excite the oscillator by the same amount, 

no matter what the decay time, as long as the pulse is shorter than the decay time or 
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measuring time. 

Thermal noise is not, however, the only uncertainty. If the number <N> is of 

order unity or less, the Poisson fluctuations in the count will introduce uncertainty. 

This limit is given by 

(782/2) I c(~)I 2 ~2 n(~) > l. 
o 

Because of the definition of c(~) we have 

Icc~> 12 ~ • , or ~2~ n(~) k I. 

Thi s  i s  maximised  by l e t t i n g  82T ~ 1. ( I f  82T > 1, t h e  above  d e r i v a t i o n  o f  <N> f a i l s  

and no advantage is gained). The limit ~2 n(~) ~ 1 is essentially the so-called quan- 
o 

tum l i m i t .  

If, for this type of transducer, we optimise 1812 and T for maximum sensitivity 

(i.e. I~]2T~I) , then the thermal noise depends on Ti~ O ~2.i Assuming I%] 2 << I~iI 

(as is certainly true for any known detector), this product is just proportional to 

T/Q where Q is the quality factor of the oscillator in the absence of any readout 

coupling. Furthermore, if 8 is sufficiently large (82 > ~ ~), the thermal noise 

goes as 1/82 . The optimum strategy therefore becomes to make the measuring time app- 

roximately equal to the decay time of the oscillator, to make T/Q as small as possible 

beth by decreasing the temperature and by decreasing the coupling of the oscillator to 

any spurious fields, and to make the coupling of the oscillator to the readout system 

as strong as possible. 

The above are of course well known, but it is reassuring to see these conclusions 

follow from a simple, exactly solvable model. 

APPENDIX C 

This appendix presents a detailed analysis of a model quantum non demolition read- 

out system coupled to a damped harmonic oscillator, which is under the influence of a 

signal field and of thermal noise sources. The system will be mathematically idealised 

so as to make it exactly solvable, but will retain enough features of a realisable 

system to act as a guide to the behaviour of such a system. 

The oscillator is assumed to have momentum and position coordinates p and q which 

are coupled to a set of one-spatial dimensional scalar fields ~.. These fields will 
1 

provide the damping of the oscillator and the source of the thermal noise. Also, one 

of the fields, ~ , will be the signal channel. (i.e. it is signals present in this 
o 
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channel which we will want to detect). The "measurements" on the oscillator will be 

made by means of a "readout field" ~. For simplicity I will assume that the ampli- 

tude of T is directly measurable by some means which I will not analyse further. All 

of the ~. fields, the oscillator and the T field will be considered to be fully quantum 
i 

mechanical. 

The measurements on the readout field T will be taken to be measurements (in the 

quantum sense) of the amplitude operators 

Af, T = (1/2) ff(t-T) cos ~o t ~(t,x O) dt 

at some point x > 0. (For mathematical convenience we can take x 
o o 

the positive frequency function h(t) by its Fourier transform 

+ 
= 0. ) Define 

h(~) = (i/2im) (f(~-~) + f(~+~ )) @(m) 
o o 

I will assume that h(t) is norm~lised so that 

-ifh*(t) h(t) dt = 1 

where the dot indicates the time derivative. The operator Af, T is then equal to 

(a'h, T + ah, T) , 

where ah, T is the annihilation operator associated with the mode h(t-T) (i.e. the 

mode h centered at time T). f(t) will be assumed to be a smooth real function of 

width T centered at time t=0, while its Fourier transorm f(~) will have width of 

order i/T centered at ~=0. T will in this case represent the averaging time of the 

measurement which will be assumed to be much longer than the oscillator period, but 

less than the decay time of the oscillator. 

Af, T is thus a measure of the amplitude of the cos~ ° t component of T at time T 

averaged over time T. It is Hermitean and thus a measurable quantity in the quantum 

sense. I will leave the measurement technique unspecified (one has to stop somewhere). 

Because of the coupling of the ~. fields of the oscillator, the presence of thermal 
1 

noise, or of a signal in the ~. fields, will change the oscillator coordinates. Fur- 
1 

thermore, because of the coupling of the ~ field to the oscillator, changes will thus 

be produced in T . The change in the value of Af, T with T will then give a measure 

of the signal (or noise) in the ~i fields. 
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Having described the system to be used, we can now set up the model to show that 

one can in principle set up a quantum non demolition readout (i.e. one in which the 

readout can contribute negligible noise to the measuring process). The full action 

for this system will be given by 

= -~q - {~i~/2 - (82/2) cOS~ot[¢cosfit - osi~t~) ¢d/dt) ¢CO~o~)1 

_ i~ iz o.,i - 8cos%t [cosfit - osi~t/~] o# 

= p - (82/2) cOS~ot [sin~t/5 d(cOS~otX)/dt] - ScoS~Oot [sin~t~ 0#] 

Note that if 8 = 0 (no readout), the equations for p and q are those of a damped har- 
{: o, 

monic oscillator with damping term ~ /2 = 2~ and forcing term -Z ~i i" 

Instead of solving for p, q. it is much simpler to solve for X. We find 

= -~x + Csin~t~)~h~i o~ i o 

Notice that ~, the readout field depends only on the variable X while X depends only 

on the infields o~.. This demonstrates the exact quantum non-demolition nature of 
1 

this interaction. 

It will now be simpler to examine the Fourier transform of the field T at x = 0+C. 

Defining 

we have 

~(0J) = lei~t~ (t, 0+~) dt 

~(~) = oT(~) + (814)(x(~+~o) + x(~_~o)) 

To simplify future discussion, I will assume that if w>0, the term proportional to 

X(~+~ ) can be neglected, while for ~<0, X(60-~ ) may be neglected. (This essentially 
o o 

assumes that the oscillator decouples from the ~. fields at sufficiently high frequen- 
1 

cies). Solving for X we finally have for ~>0 

~(~) = o~(~) + (818)[ (eil~) (il(2(~_~o) + O)) 

x [c~-~o+~) °~ic~-~o+~l - c~-~o-~) o~ ~_~o_~) ] i 

and we find 
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Af, T = fd~0 f*CoJ)e it0T[~(~+~o O) + ?(~0-03o)]/41T 

+ (8/8~)Z ~ifd0~ f*C03)e i~T [C~+~) o~. (~0+~) - (~0-~) °~.(~0-~)]/2~(i0~+o) 
i l i 

The expectation value of Af, T will obviously depend on the initial state of the T field 

which we will assume to be the vacuum state (i.e. no initial ~ particles, at least not 

with frequency near ~o), and on the initial value of the o~.l fields. In particular, 

by making 8 large enough, the effect of the o~. fields on the expectation value of 
1 

Af, T can be made as large as desired. This system therefore definitely acts as an 

amplifier-transducer. 

The important point is to calculate the n~Ise introduced into the measurement of 

Af,  T b o t h  by quantum and by t h e r m a l  e f f e c £ s .  The s i m p l e s t  method  i s  t o  c a l c u l a t e  t h e  

expectation value of (Af,T) 2 in the state in which there are no coherent incoming o~. 
1 

waves, but the o~. states are thermally excited. In a thermal state we have the ex- 
1 

p e c t a t i o n  v a l u e  

< o~.(~)  o~ ; (~ , )  > = [ ( 2 z 6 i  j ~ ( ~ + ~ , ) ) / l ~ t  ] [ T / I ~  I + e ( -~ ) ]  
1 3 

This equation results because for a 1 dimensional wave ~(~)/(2n~) ½ is the annihilation 

operator for the mode of frequency ~. The first term in the above expression is the 

thermal factor where T is the temperature (in units where k = h = I) while the second 

is due to the quantum nature of the fields. Also, because of the real (Hermitean) 

nature of the fields we have 

o~%(~) = o~.(_~). 
1 1 

We also have 

< o~(~) o~ (~ , )>  = [ ( 2 ~ 6 ( ~ + ~ ' ) / l ~ l ]  8(-c0) 

as, by assumption, T is initially in its vacuum state. 

There are now two alternatives. One can measure the amplitude Af, T at one time to 

determine whether or not the measured value differs appreciably from that expected 

from the noise terms alone. The criterion here is that the expected signal must be 

greater than the amplitude expected due to noise alone; i.e. it must be greater than 

< A~,T > ~ where the expectation is that in the state with no signal input. We have 

f,T - J s ~  I~+%1 64~2 i ]2~(~'+o')1~1 " 
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where I have assumed that the width of f(~0) is much less than ~. By the normalisation 

of f (~), the first term is unity. The second term is dominated by the pole at 60=o, 

giving 

< Af ,  T ~  > - 1 + (62 /2 '~ - )~c ,~1f¢0) I  ~ Cl + 2~/~) 

~- 1 + (82/2S~) I f ( o ) I  2 (1 + 2 T / 5 ) .  

On the other hand, one expects the noise at two measurements separated by less 

than the damping to be correlated. This is born out by calculating the expectation 

value of the product of the amplitudes at two times T, T' (chosen so that IT'-T] is 

greater than the averaging time). We find 

< A f ,  T A f , T , >  = (82/25~) I f ( o )  [ 2 ( l +2T /~ )  exp - O IT -T '  1. 

Because of this correlation, it is better to measure the change in the amplitude Af, T 

over a time period shorter than the decay time of the oscillator as we have 

< (Af, T - Af,T,)2 > = 2 + (i - exp -OIT-T' I) (82[f(0)12/2~5)(1 + 2T/~) 

The change in Af caused by the signal is given by 

I< Af ,  T - A f , T , >  I -~ [(13a ° f ( o ) / 8 ) <  O~o (~) + % o ( - ~ > 1  

TO be detectable, this must be greater than the noise, from which we obtain 

~o21 < % ca~ . % (-a~>l 2 > (2'~IBf(o~ 12~ , 4~(T-T'~2T/a o o 

From the normalisation of h(t) we have 

I f (o~ 12 = ~0 • 

where T is the averaging time. We finally have 

¢C'o 2/'~)1< % 0  ¢5) + % o ( - ~ ) > 1  - > (2 ' / I%B '~ I  2) + ( a l T - T ' I / ~ ) ¢ 1  + 2T/5) 

The £.h.s. of this expression is just the change in X caused by the signal. The 

usual "quantum limit" would replace the r.h.s, by (2 ~)-½. By choosing a sufficiently 

large 8, the first term can be made negligible, while the second term can only be de- 

creased by reducing the temperature or reducing the damping constant of the oscillator. 
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The measuring time T-T' must remain longer than the averaging time T or the above 

analysis fails. To get an estimate of how far the present state of the art could 

exceed the "quantum limit", we can choose a frequency of order 1 k hz, a Q of i0 *0 

and a temperature T of .i K. Choosing T-T' (the measuring time) of one second, we 

find that one can just reach the quantum limit sensitivity. Thus some significant 

advances over present technology will need to be achieved to make such a scheme feas- 

ible. 

ACKNOWLEDGEMENT 

I would like to thank the National Research Council of Canada and the Alfred P. 

Sloan Foundation for support of this work and the organisers of this school for the 

travel grant which enabled me to attend. 

NOTES AND REFERENCES 

1 The first person to seriously worry about this quantum limit and think about tech- 
niques for avoiding this limit was V. Braginsky. See Braginsky, V.B., and Manukin, 
A.B., in Measurement of Weak Forces in Physics Experiments, University of Chicago 
Press, Chicago, 1937 ed. Douglas, D.H. See also 
Braginsky V.B., and Vorontsov, Y.I., Usp.Fiz.Nauk. 114, 41, (1974) [SoY.Phys. 
Usp. 17, 644 (1975)]: 
Braginsky, V.B., Vorontsov, Y.I., Krivchewkov, V.D., Zh.Exsp.Tesp.Teor.Fiz.68,55, 
(1975) [J.E.T.P. 41,28,(1975)]. 

2 One would expect the strongest sources to be highly nonlinear in the source region, 
but to give a deviation from flatness as seen at infinity of less than unity by the 
time one arrived at the radiation zone, i.e. ~ one wavelength from the source. 
Actual sources are probably much weaker than this. 

3 As the collapse time for a solar mass black hole is about 10-5to 10-~sec., the 
spectrum of gravity waves should extend to I0 Khz, with a reasonable strength of 
wave omitted for an asymmetric, rapidly rotating final collapse stage. 

4 See for exaple Tamman, G.A., "Statistic of Supernovae in External Galaxies" 
in Eighth Texas Symposium on Relativistic Astrophysics ed. Papagiannis M.D., 
New York Acad. Sc.,(N.Y.)1977who derives a figure of about 1 per i0 years for our 
galaxy. 

5 This uses the classical estimate of the energy in a gravity wave given, for example, 
in Misner, C., Thorne, K., and Wheeler J., Gravitation Freedman (N.Y.) 1975 p.955f. 

6 Heffner, H., Proc. I.R.E. 50, 1604 (1962) 
7 Haus, H.A., and Mullen, J.A., Phys.Rev. 128, 2407. 
8 The (1962) "well known" commutation relation between number and phase is not exact 

and not derivable from quantum theory because of the non existence of an operator 
corresponding to phase conjugate to N. See for example Carruthers P., Nieto, M.M., 
Rev.Mod. Phy8. 40, 411 (1968) for a discussion of some of these problems. 

9 These field normal modes are the C-number solutions of the wave equations for 
and ~ under the assumption of no coupling between the fields. See for example 
Bjorken, J., Drell, S., Relativistic Quantum Fields McGraw Hill (N.Y.) 1964. 

i0 See reference 9. 
Ii Even in the case of non linear interactions, the commutation relations place strong 

restrictions on the form of the S-matrix which maps the ingoing states to the out- 
going states. 

12 Von Neuman J., in Mathematical Foundations of QuantumMechanics (Tr. Beyer, R.T.) 
Princeton University Press (1955) discusses the problem of breaking the chain of 
analysis in any quantum measurement process. 

13 Einstein A., Phys. Zeit8. 18, 121 (1917) 
14 Paper in preparation. 
15 Hollenhorst, J.N., Phys.Rev. D. 19, 1669 (1979) 



426 

16 Melstrom C.W., Quantum Detection and Estimation Theory Acad. Press (N.Y.) 1976 
17 This is of course the property which sets quantum mechanics off from classical 

mechanics, that different states can have some probability of being indistinguish- 
able. 

18 The coherent states were introduced by Schroedinger E., Z.Physik.,14, 664 (1926), 
and are minimum uncertainty (dpAq = h/2) states. They are essentially eigenstates 
of the annihilation operator. See also Glauber, R.J., Phys.Rev. 131, 2766 (1963) 

19 This analysis was actually derived by Thorne K., et.al, in ref 21 and Unruh W. in 
ref 23 before Hollenhorst's works. 

20 See J. Lipa lectures in this volume. 
21 Thorne K., Drever, R.W.P., Caves C.M., Zimmerman, M., and Sandberg V.D., Phys. 

Rev.Lett. 40, 667 (1978) 
22 Caves, C.M., Thorne, K.S., Drever R.W.P., Sandberg V.D., and Zimmerman, M., "On 

the Measurement of a Weak Classical Force Coupled to a Quantum Mechanical Oscil- 
lator I. Issues of Principle" Cal. Tech. preprint Apr. 1979. 

23 Unruh W., Phys.Rev.D. 19, 2888 (1979) 
24 See for example the discussion in pp. 331f in Louise11 W.H., Quantum Statistical 

Properties of Radiation Wiley, (N.Y.) 1973. 
25 See for example the discussion in Messiah A., ~antum Mechanics Wiley, (N.Y.) 1966 

on pp. 139-149 The argument presented in this paper demonstrates how the quantum 
uncertainties in the readout system preserve the uncertainties of any variables 
being measured. 

26 See Misner, Thorne, Wheeler (ref 5) on p. 1031f. 
27 Carter B., Quintana H., Phys.Rev.D. 16, 2928 (1977) Dyson F., Ap. J. 156, 529 (1969). 
28 See Misner, Thorne, Wheeler (ref 5) on p. 946f. 

29 The geodesic equations for the spatial components of the position 

d2Xi/dl 2 + F i (dX~/dl)(dX~/dl) = 0 

will maintain X i constant if dXi/dl is initially zero for all i since F i depends 
oo 

only on hot. 

30 ~ and I are the usual Lame coefficients for an isotropic medium. 


