
Physics 501-22
Assignment 3

1.) Hardy system: Given the state

|Ψ〉 = α |↑〉 |1〉+ β |↓〉 (S |1〉+ C |0〉) (1)

where this is a unit vector with |α|2 + |β|2 = 1 and |C|2 + |S|2 = 1
i)Argue that we can always choose the coefficients as real and positive by

adjusting the phases of the basis vectors..
——————————
We have three possible phases. One phase, the overall phase, is irrelevant,

since we are only interested in the state up to a phase. The other two phases
can be absorbed into the relative phase of |1〉 and |0〉. The other phase can be
absorbed into |↑〉 vs |↓〉

*********************************
ii) Find the value of S that minimizes the probability of having the final value

of ”D” be equal to +1. (Recall from the lectures that one has two systems, with
A,B being attributes of the first system, and C,D of the second. They are such
that A → 1 ⇒ C → 1, C → 2 ⇒ B → 1, B → 2 ⇒ D → 1, but A → 1 does not
imply that D → 1 (in fact the probability that when A has value 1 it is highly
improbably that D also has the value 1. A → 1 here means A is found to have
value 1. ⇒ means ”implies that”– ie if one makes measurements on the system,
then it is always true that if A and X are measured, then whenever A is found
to value 1, X always also has value 1.)

———————————————————
Oh dear, I have overloaded the definiton of C. It is both the attribute of the

second system and a coefficient of the wavefunction. Since C2 + S2 = 1 in the
second, I will always use

√
1− S2 for the coefficient.

Define α = s,β =
√
1− s2, since α2 + β2 = 1 Then

|A〉 = |↑〉 (2)

|C〉 =
〈A| |ψ〉
| 〈A| |ψ〉 | = |1〉 (3)

(4)

where | 〈A| |ψ〉 | =
√

(〈ψ| |A〉)(〈A| |ψ〉).

|B〉 =
〈C| |ψ〉
| 〈C| |ψ〉 | (5)

=
s |↑〉+

√
1− s2S |↓〉

√

s2 + (1− s2)S2
(6)

|D〉 = 〈B| |ψ〉 = s2 |1〉+ (1− s2)S2 |1〉+ (1− s2)S
√
1− S2 |0〉

√

(s2 + (1− s2)S2)2 + (1− s2)2S2(1− S2))
(7)

=
(s2 + (1− s2)S2) |1〉+ (1− s2)S

√

(1− S2) |0〉
√

(s2 + (1− s2)S2)2 + (1− s2)2S2(1− S2)
(8)
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Then the probability of D given A, is the probability of D and A over the
probability of A or

PD|A =
PD&A

PA

=
〈A| 〈D| |ψ〉 |2
| 〈A| |ψ〉 |2 (9)

= (〈C| |D〉)2 =
(s2 + (1− s2)S2)2

(s2 + (1− s2)S2)2 + (1− s2)2S2(1− S2)
(10)

To find the minimum over S, the easiest way is to let S2 = z and take the
derivative with respect to z. This gives

− (s− 1)2 ∗ ((z − 1) ∗ s2 − z) ∗ ((z − 1) ∗ s2 + z) ∗ (s+ 1)2

((z − 1) ∗ s4 − z)2
= 0 (11)

Since 0 < z < 1, the only solution is z = s2

1+s2
which gives

PD|A =
4s2

(1 + s2)2
(12)

which goes from 0 for s=0 to 1 for s=1. Since for s = 0, the probability of
measuring A goes to 0 as well, we need s to be small, but not zero.

Note that if S2 = 0 or S2 = 1 for non-zero s, the probability of D given
A, PD|A is unity. Since that is the maximum value for the probability, the
extremum above must be a minimum for constant s..

********************************************
iii) Given that value of S, what is the largest value of the the ratio of the

eigenvalues λ1, λ2 where the two λ are the two eigenvalues of the reduced density
matrix of particle 1 with λ1 being the smallest of the eigenvalues.

——————————————-
If S2 = s2

1+s2
, we have

|ψ〉 = s|↑〉 1 +
√

1− s2

1 + s2
|↑〉 (s |1〉+ |0〉) (13)

Tracing out over the first system we get

ρ2 = s2 |1〉 〈1|+ 1− s2

1 + s2
(s |1〉+ |0〉)(s 〈1|+ 〈0|) (14)

= 2
s2

1 + s2
|1〉 〈1|+ s

1− s2

1 + s2
(|1〉 〈0|+ |0〉 〈1|) + 1− s2

1 + s2
(|0〉 〈0|) (15)

The trace of this (2s2+(1−s2))
1+s2

is unity. The determinant

det = 2
s2

1 + s2
1− s2

1 + s2
− (s

1− s2

1 + s2
)2 = s2

1− s2

1 + s2
(16)
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Thus the eigenvalue equation is

λ2 − λ+ s2
1− s2

1 + s2
= 0 (17)

λ =
1

2
(1±

√

1− 4
s2(1− s2)

1 + s2
(18)

*****************************************************
(recall that the density matrix for the second particle associated with a pure

entangled state on the whole system is

|Ψ〉 =
∑

i

λi |φi〉 |ψi〉 (19)

is

ρ =
∑

i,j

λ∗i λj 〈φi| |φj〉 |ψj〉 〈ψi| (20)

where |φ〉 is a state for the first particle/system, while |ψ〉 is a state for the second
particle/system. For the Hardy system, use the two component vector to find
the matrix representing the reduced density matrix for the second particle.

2) Assume that we have a Hamiltonian

H =
1

2

(

p21
m2

1

+
p22
m2

+ k1x
2
1 + k2x

2
2 + 2ǫx1x2

)

(21)

a)What are the 4 eigenvalues ±iω1, ± ω2 of the Hamiltonian equations for
this Hamiltonian in terms of the constants m1,m2, k1, k2, ǫ.

————————————–
The eigenvalues are given from the equations of motion by assuming that all

dynamic variables have their derivative equal to −iω times themselves. Thus
we have

ωx1 =
p1
m1

(22)

ωx2 =
p2
m2

(23)

ωp1 = −(k1x1 + ǫx2) (24)

ωp2 = −(k2x2 + ǫx1) (25)

From the first and third, and the 2nd and 4th, we get

ω2x1 = − (k1x1 + ǫx2)

m1
(26)

ω2x2 = − (k2x2 + ǫx1)

m2
(27)
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If we define Ω2
1 = k1/m1 and Ω2

2 = k2/m
2 we find

(ω2 − Ω2
1)(ω

2 − Ω2
2) =

ǫ2

m1m2
(28)

or

ω2 =
1

2

(

(Ω2
1 +Ω2

2)±
√

(Ω2
1 − Ω2

2)
2 + 4

ǫ2

m2
1m

2
2

)

(29)

*************************************
b) Is there any condition on ki,mi, ǫ such that ω1 = ω2?
———————————————–
Only if ǫ = 0
*******************************
c) If m1 = m2, k1 = k2, is there any condition on ǫ such that the eigenvalues

are not purely imaginary?
————
From part a, if Ω1 = Ω2 then

ω2 = Ω2 ± ǫ

m
(30)

thus if ǫ > mΩ2, two of the solutions for ω have imaginary ω.
*******************
d) What are the normalised (using the symplectic norm) eigenvectors if

m1 = m2, k1 = k2 and ǫ 6= 0?
———————————

< {x1, x2}, x1, x2 >= i[(x∗1p1 + x∗2p2)− (p∗1x1 + p∗2x2)] = 2ω(x21 + x22) (31)

where

ω2 = Ω2 ± ǫ

m2
(32)

Actually, interchange symmetry of this Hamiltonian, (x1 ↔ x2) the inter-
change symmetry is a a symmetry of the solutions. Ie, defining

ys = (x1 + x2)/
√
2 ; ps = (p1 + p2)/

√
2 (33)

ya = (x1 − x2)/
√
2 ; pa = (p1 − p2)

√
2 (34)

(35)

(which is a cannonical transformation since

p1ẋ1 + p2ẋ2 = psẏs + paẏa (36)
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and

H =
1

2
((p2a + p2s)/m+ (Ω2 + ǫ)x2s + (Ω2 − ǫ)x2a) (37)

= (38)

Ie, these modes are decoupled (no coupling interaction).
****************************8
3). Consider the Hamiltonian H = 1

2 (p
2 − x2).

a)What are the eigenvalues of the Hamiltonian (The ”diagonalization of the
Hamiltonian” values for omega? Show that there are no purely real eigenvalues.

—————————-

−iωx = p ; −iωp = x (39)

or ω2 = −1. Ie, the eigenvalues are purely imaginary. This implies that the the
solutions are e−iωt and eiωt are both real.– e±t.

*******************************
b)Find a positive norm, normalised mode. (Recall that if you have two

independent classical solution, the sum of the first plus i times the second is a
complex mode solution.) What is the time dependence of this mode. Show that
its norm is independent of time explicitly.

——————————–
To get a complex solution one has to take a complex sum of these two modes,

eg

x = α(et + ie−t) (40)

with α real (one can take arbitrary combinations, eg, αet + βe−t with arbitrary
complex α and β, as long as β/α is not real. Now its complex conjugate is
another solution. Then

p = ∂tx = α(et − ie−t) (41)

and the norm is

< x, x >= i|α|2(et − ie−t)(et − ie−t − (et − ie−t)(et − ie−t)) (42)

= 4 (43)

Thus to normalise this, we need to take α = 1/2. Note that this is constant,
even though the modes are either exponentially growing of dying.

***********************************.
d)Find the Annihilation and Creation operators corresponding to this mode,

and show explicitly that they are independent of time.
—————————————–
The Heisenberg solutions for the equations of motion are

∂tX = P (44)

∂t = X (45)
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with solutions

X = X0cosh(t) + P0sinh(t) (46)

P = P0cosh(t) +X0sinh(t) (47)

Then we have

A = < x,X > (48)

= i
1

2
((et − ie−t)(cosh(t)P0 + sinh(t)X0)− (et + ie−t)(X0cosh(t) + P0 sinh(t))(49)

=
i

4

[(

(e2t(X0 + P0) + (P0 −X0)− i(P0 +X0)− ie−2t(P0 −X0))
)

(50)

−
(

e2t(X0 + P0) + (X0 − P0) + i(X0 − P0) + ie−2t(X0 − P0)
)]

(51)

=
1

2
(P0 +X0 + i(P0 −X0)) (52)

which is independent of t.
*********************************************
e) What is the quantum Hamiltonian in terms of these annihilation and

creation operators?
———————————————-
The Hamiltonian must be Hermitian and is time independent. Thus we must

have

H = αA2 + α∗A†2 + β(A†A) + γ (53)

where α is complex, β and γ are real. Now, we have

A2 =
1

2
(P0X0 +X0P0 + I ∗ (P 2

0 −X2
0 )) (54)

and

H =
1

2
(P 2 −X2) =

1

2
(P 2

0 −X2
0 ) (55)

Thus

H = − i

2
(A2 − (A2)†) = − i

2
((A2 −A†2)) (56)

****************************************
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