
Physics 501-22
Assignment 2

1)Given two spin 1/2 (ie, two level) systems, one of the systems is supposed
to represent the states of an interferometer, the other a measuring apparatus.
The interferometer has two input arms in which a particle enters onto a half
silvered mirror. The σ3 eigenstates are supposed to represent which arm of the
interferometer the particle is in. The upper arm is the the σ3 =+1 eigenstate,
and the lower arm the σ3 =-1 eigenstate. The two half silvered mirror each
impliment the unitary matrix U = 1√

2
(σ1 + σ3).

In addition we will place into the upper arm between the two half silvered
mirros a two level measuring apparatus, whose intial state is the -1 eigenstate
of Σ3. If the particle is in the upper arm between the two half silvered mirrors,
then the state of the apparatus goes from the lowest to the upper (+1) state
with amplitude cos(theta). If the particle is in the lower branch, the apparatus
remains in thelower (-1) state.

After the measurement, the particle goes through another half silvered mir-
ror.

Figure 1: The interferometer with upper path defined as the +1 eigenstate of
σ3 and -1 the lower. The second diffraction grating (grey) ”mirror” may or may
not be in place. The red trajectory is the particle coming in from the lower
(|−1〉

σ
) while the green comes in from above. (|1〉

σ
). The light green and light

red are superpositions an the two tracks. The diagram is if the second half
silvered mirror is in place. Otherwise the light tracks would continue through.
The red and green tracks have been displaced horizontally from each other just
to make them visible. In actuallity, they would follow the same paths between
the mirrors. The yellow box is where the interaction between the apparatus and
the particle takes place, while the blue is the apparatus in its initial state of of
Σ3 having value of -1.

a)σ3 is the operator which says whether or not the particle is in the upper
or lower region. Ie, if σ3 is measured, if the answer is +1, it is upper, if -1 it
is lower. Assuming that the initial state of the particle is |−1〉

σ3
. What is the

state of the particle just after it has gone through the first half-silvered mirror.

————————————————–
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1√
2
(σ1 + σ3) |−〉 = 1√

2
(|−〉 − |+〉)a

******************************

b) What is the state of the whole system after the particle has passed the
measuring apparatus?

Show that

UM =
1

2
(sin(θ)IΣ + i cos(θ)Σ2)(Iσ + σ3) + IΣ(Iσ − σ3) (1)

is a Unitary matrix which impliments the above measurement protocol. (prove
that this is a Unitary matrix, and that it produces the needed result) IΣ and
Iσ are the unit matrices for the apparatus and particle respectively.

—————————————————-

U †
M
UM =

1

2
(sin(θ)IΣ − i cos(θ)Σ2)(Iσ + σ3) + IΣ(Iσ − σ3) (2)

I2Σ = IΣ; IΣΣi = Σi; Σ2
2 = IΣ (3)

(Iσ ± σ3)
2 = 2(Iσ ± σ3 (4)

(Iσ + σ3)(Iσ − σ3) = 0 (5)

(Iσ − σ3)(Iσ + σ3) = 0 (6)

U †
M
UM =

1

4
(sin(θ)IΣ + cos(θ)Σ2)

2(Iσ + σ3) + IΣ(Iσ − σ3) (7)

= IΣIσ (8)

Then

UM (
1√
2
|↓〉 [|−〉+ |+〉) = 1

2
√
2
(sin(θ) |↓〉 − cos(θ) |↑〉]2 |+〉 |↓〉 |−〉) (9)

********************************************

c) If the second half silvered mirror is in place, what is the state of the whole
system after that half silvered mirror?

———————————————-
WE now multiply the result by the half silvered mirror Unitary matrix

IΣ(
1√
2
(σz + σx) to give

1

2
[(sin(θ)(|↓〉)− cos(θ)(|↑〉](|+〉+ |−〉)(|↓〉 (|−〉 − |+〉)) (10)

= |↓〉 [(sin(θ)− 1) |+〉 (sin(θ) + 1) |−〉)− cos(θ)(|↑〉 ((|+〉+ |−〉)) (11)

******************************************8

d)If the second half-silverd mirror is in place, and the Σ3 attribute is of the
apparatus is measured and found to have value +1. what is the probability that
the particle will have been found to come out in the upper state?
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———————————–
After the measurement of Σ3, the state is |↑〉 and the state of particle is

(sin(θ) − 1) |+〉 + (sin(θ) − 1) |−〉 and the probability of comint out in the up

direction is (sin(θ)−1)2

(sin(θ)−1)2+(sin(θ)+1)2) = (sin(θ)+1)2

sin(θ)2+1 If θ = 0, this is 0, while if

θ = π/2, this is 1/2.
**************************************

e) What if instead the Σ1 attribute of the apparatus is measured and found
to have value +1. What will the probability be that the particle comes out the
upper state from the second mirror?

————————————–
The +1 eigenstate of Σ1 is 1√

2
(|↑〉+ |↓〉) and so, if we call the final state of

the system plus apparatus Ψ, then the (unnormalised( state of the particle will
be

1√
2
(〈↑|+ 〈↓|) |Ψ〉 = 1√

2
[(sin(θ)− 1) |+〉 (sin(θ) + 1) |−〉)− cos(θ)((|+〉+ |−〉))] (12)

=
1√
2
[(sin(θ)− 1− cos(θ)) |+〉+ (sin(θ) + 1− cos(θ)) |−〉)] (13)

If θ = π/2, this is proportional to |+〉 Ie, one gets interference, so the particle
always comes out of just one of the ports.

Ie, the conditional measurement of the apparatus changes the interference
of the particle .

*************************************************************

Does it matter if the Σ1 is measured before or after the particle measurement
after it has exited the apparatus?for the answer to the last question?

———————————
No
**********************************

f) What is the reduced density matrix for the particle after the measuring
apparatus but before the second half silvered mirror?

————————————————————————

TrΣ

(

1

2
√
2
(sin(θ) |↓〉 − cos(θ) |↑〉]2 |+〉 |↓〉 |−〉) 1

2
√
2
(sin(θ) 〈↓| − cos(θ) 〈↑|]2 〈+| |↓〉 〈−|)

)

(14)

=
1

8
TrΣ ([|↓〉 (2 sin(θ) |+〉+ |−〉) + |↑〉 (−2 cos(θ) |+〉)][〈↓| (2 sin(θ) 〈+|+ 〈−|) + |↑〉 (−2 cos(θ) 〈+|)]) (15)

=
1

8
((2 sin(θ) |+〉+ |−〉)(2 sin(θ) 〈+|+ 〈−|) + (−2 cos(θ) |+〉)(−2 cos(θ) 〈+|)) (16)

It is not diagonal.
******************************************************
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g) What is the reduced density matrix for the measuring apparatus after the
measurement interaction but before the half silved mirror?

2)Lets say we have a the state

|ψ〉 = sin(θ) |+, ↑〉+ cos(θ)(sin(φ) |−, ↑〉+ cos(φ) |−, ↓〉) (17)

In the lecture I chose sin(φ) = sin(θ)/cos(θ).
As in the lecture A and B are operators on the first system (its Hilbert space

is spanned by |+〉 , |−〉 while C and D are of the second spanned by |↑〉 , |↓〉. Lets
say that |±〉 are the eigenstates of A.

a) What is the reduced density matrix for the first and second systems.

———————————————-

ρ1 = Trσ(sin(θ) |+, ↑〉+ cos(θ)(sin(φ) |−, ↑〉+ cos(φ) |−, ↓〉)) (18)

⊗(sin(θ) 〈+, ↑|+ cos(θ)(sin(φ) 〈−, ↑|+ cos(φ) 〈−, ↓|)) (19)

= sin2(θ) |↑〉 〈↑|+ cos(θ)2(sin(φ) |↑〉+ cos(φ) |↓〉)(sin(φ) 〈↑|+ cos(φ) 〈↓|)(20)

= (sin2(θ) + cos2(θ)sin2(φ)) |↑〉 〈↑|+ cos2(θ)cos2(φ) |↓〉 〈↓| (21)

+cos2(θ)cos(φ)sin(φ)(|↑〉 〈↓|+ |↓〉 〈↑|) (22)

The trace is 1 as it should be.
For the second system we trace out over the Σ eigenvalues,

ρ2 = TrΣ(sin(θ) |+, ↑〉+ cos(θ)(sin(φ) |−, ↑〉+ cos(φ) |−, ↓〉)) (23)

⊗(sin(θ) 〈+, ↑|+ cos(θ)(sin(φ) 〈−, ↑|+ cos(φ) 〈−, ↓|)) (24)

= (sin(θ) |+〉+ cos(θ)(sin(φ) |−〉)(sin(θ) 〈+|+ cos(θ)(sin(φ) 〈−|) + cos(θ)2 cos(φ)2 |−〉 〈−|(25)

= sin(θ)2 |+〉 〈+|++cos(θ)2 |−〉 〈−| i (26)

+(sin(θ) cos(θ) sin(φ))(|+〉 〈−|+ |−〉 〈+|) (27)

which again has unit trace, and is not diagonal. The determinant, which is the
same in both cases is

det(ρ2) = sin(θ)2 cos(θ)2(1− sin(φ)2) = sin(θ)2 cos(θ)2cos(φ)2 (28)

**********************************************

b) What are the +1 eigenvectors For A, B, C, D which make up the Hardy
chain? Ie, if A is measured to have value +1, then C has value +1, If C has
value +1, then B has value +1. If B has value +1 then D has value +1.

———————————————–
If A → 1 then its state is |+〉. This multiplies the vector sin(θ) |↑〉 which

normalized is |↑〉 which is the +1 eigenvalue of Σ3.

〈↑| |ψ〉 = sin(θ) |+〉+ cos(θ) sin(φ) |−〉 (29)
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which normalised is

|B → 1〉 = sin(θ) |+〉+ cos(θ) sin(φ) |−〉
√

sin(θ)2 + cos(θ)2 sin(φ)2

This is the +1 eigenvector of B.
Finally the +1 eigenvector of D is

|D → 1〉 = ND 〈B → 1| |ψ〉 = ND[(sin(θ)2 + cos(θ)2 sin(φ)2) |↑〉+ cos(θ)2 cos(φ) sin(φ) |↓〉] (30)

where N has value

ND =
1

√

(sin(θ)2 + cos(θ)2 sin(φ)2)2 + (cos(θ)2 sin(φ)2)2
(31)

If A is measured and has value +1, the the probability that D has value 1 is

| 〈↑| |D → 1〉 |2 =
(sin(θ)2 + cos(θ)2sin(φ)2

(sin(θ)2 + cos(θ)2 sin(φ)2)2 + (cos(θ)2 sin(φ)2)2
(32)

= sin(φ)2(1− sin(θ)2) + sin(θ)2

sin(φ)2(1− sin(θ)4) + sin(θ)4
(33)

Note that this is minimized by taking sin(φ) = ± sin(θ)√
1+sin(θ)2

giving the prob-

ability of

P = 4
sin(θ)2

(1 + sin(θ)2)2
(34)

This gives roughly the same probability as the assumption I made in class
that sin(φ) = tan(θ) for small θ, the class assumption does not work for θ > π/4
since that would require sin(φ) > 1.

Note (You are not expected to have given the argument below) that this also
implies that this Hardy chain could be used for a completely arbitrary state. If
the state was

Let us assume that the state is

|ψ〉 = α |+〉 |↑〉+ β |+〉 |↓〉+ γ |−〉 |↑〉+ δ |−〉 |↓〉 (35)

sin(θ)2 = α2 + β2 (36)

˜|↑〉 =
1

| sin θ)| (α |↑〉+ β |↓〉) (37)

˜|↓〉 =
1

| sin θ)| (α |↓〉 − β |↑〉) (38)

sin(φ) =
1

sin(θ) cos(θ)
αγ + βδ (39)
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we have

ψ = sin(θ)
∣

∣

∣
+, ↑̃

〉

+ cos(θ) |−〉 (sin(φ)
∣

∣

∣
↑̃
〉

+ cos(φ)
∣

∣

∣
↓̃
〉

(40)

I.e., the Hardy chain can be applied to any arbitrary two-2level system.
*****************************

c) What is the probability that, if A has value +1, then D has value +1?

———————————–
If A has value 1, then the state of the the second system is 1, with vector

|↑〉. The Probability that D has value 1 is then

P =
((sin(θ)2 + cos(θ)2 sin(φ)2))2

(sin(θ)2 + cos(θ)2 sin(φ)2))2 + cos(θ)4cos(φ)2 sin(φ)2
(41)

3) No Cloning
Argue that there exists no single unitiary matrix which will transform (α |+〉+

β |−〉) |↓〉 to (α |+〉+ β |−〉)((α |↑〉+ β |↓〉)) for arbitrary (normalized) values of
β, α Ie, you cannot transform a clone a generic state. Why does problem 4 not
fall afoul of this theorem?

————————
Any Unitary transformation is linear. But the transformed vector is a func-

tion of α2, β2, αβ which are all nonlinear function of α and β. Thus no unitary
transformation can behave as required.

***************************

4). Bell states
Given two 2-dimension systems, with basis states

|B1〉 =
1√
2
(|+〉 |↑〉+ |−〉 |↓〉) (42)

|B2〉 =
1√
2
(|+〉 |↑〉 − |−〉 |↓〉) (43)

|B3〉 =
1√
2
(|+〉 |↓〉+ |−〉 |↑〉) (44)

|B4〉 =
1√
2
(|+〉 |↓〉 − |−〉 |↑〉) (45)

Show that these are eigenstates of the operator

S = σ3Σ3 + 2σ1Σ1 (46)

where σi operate on the |+〉 , |−〉 subspace and Sigmai operate on the other
subspace, and |±〉 are the eigenstates of the σ3 and |l〉 of the Σ3.

————————————————–
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σ3Σ3 |+, ↑〉 = |+, ↑〉 (47)

σ3Σ3 |−, ↑〉 = − |−, ↑〉 (48)

σ3Σ3 |+, ↓〉 = − |+, ↓〉 (49)

σ3Σ3 |−, ↓〉 = |−, ↓〉 (50)

σ1Σ1 |+, ↑〉 = |−, ↓〉 (51)

σ1Σ1 |−, ↑〉 = |+, ↓〉 (52)

σ1Σ1 |+, ↓〉 = |−, ↑〉 (53)

σ1Σ1 |−, ↓〉 = |+, ↑〉 (54)

(55)

Thus

(σ3Σ3 + 2σ1Σ1) |B1〉 = + |B1〉+ 2 |B1〉 = 3 |B1〉 (56)

(σ3Σ3 + 2σ1Σ1) |B2〉 = + |B2〉 − 2 |B2〉 = −1 |B2〉 (57)

(σ3Σ3 + 2σ1Σ1) |B3〉 = − |B3〉+ 2 |B3〉 = |B3〉 (58)

(σ3Σ3 + 2σ1Σ1) |B4〉 = − |B4〉 − 2 |B4〉 = −3 |B4〉 (59)

(60)

*******************************************

What is the reduced density matrix for the σ system for each of these states.

——————————————–
In each case it is 1

2 the identity matrix

ρ1 =
1

2
(|+〉 〈+|+ |−〉 〈−|) (61)

*********************************************

———————————
Pauli Matrices

σ1 |+1〉 = |−1〉 ; σ1 |−1〉 = |+1〉 (62)

σ2 |+1〉 = i |−1〉 ; σ2 |−1〉 = −i |+1〉 (63)

σ1 |−1〉 = − |−1〉 ; σ1 |+1〉 = |+1〉 (64)
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