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In this paper I will examine the quantum noise sources in a 
laser interferometer detection system for gravitational radiation. 
The quantum noise sources will be of two basic forms - that due to 
the quantum nature of the light itself and that due to the damping 
in the mirror masses used as reflectors in the interferometers. 
We will find that the quantum nature of the light is the dominant 
source of noise and contributes via two mechanisms - directly as 
what has been called the photon counting noise and indirectly 
via the fluctuating force the light exerts on the mirrors. It 
will be shown that by setting up the initial state of the field 
entering the input port of the interferometer not being used by 
the laser in a generalised squeezed state, the effect of both of 
these noise sources can be made as small as desired. (The possi
bility for reducing the direct noise by a similar technique was 
shown by Caves l for a simple single mode interferometer model). 
The noise introduced by the damping of the motion of the mirror 
masses will contribute significantly only if one does squeeze 
the state of the light beam and if the laser power is sufficiently 
large. 

The model for the interferometric detector is given in 
Figure 1. The light in the interferometer arms is modelled by 
massless scalar fields ~1 and ~2 where ~1 depends only on t and z 
while ~2 depends only on t and x. Regarding both light beams as 
polarised in the y direction, these scalar fields may be taken to 
be the y component of the vector potential over I:f.IT in a gauge 
where the scalar potential is zero. The gravity wave will be 
assumed to be travelling in the y direction with polarisation axes 
parallel to the x and z axes. (This is the gravity wave for which 
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the interferometer has highest sensitivity). 

The fields ~(t,~),where ~ is either x or z,obey 

(1) 

when no gravity wave is presen~with boundary conditions on the 
mirror of ~ = O. The number density operator if ~ are quantum 
fie1ds,is given by 

i (+)a~(-) a~(+) (-) 
N = "2 (~at at ~ ) (2) 
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where ~(+) is the positive frequency component of~. Finally the 
pressure exerted by the ~ field on any surface is given by 

p = 1. [(a~) + (a~)2] 
4 at a~ 

(3) 

(Compare this with the electromagnetic stress in the direction of 
motion (E2 + B2)/8n) 

In the presence of the gravity wave6 the equation of motion 
for the light changes. Let us examine the effect in the z arm. 
I will choose my coordinates in such a way that the metric for the 
gravity wave is in the transverse traceless gauge in which the end 
mirrors see no "forces" due to the gravity wave if they are at 
rest. In this coordinate system, the metric associated with the 
gravity wave is given by2 

ds2 = dt2 _ (l+h(t-y)) dx2 - dy2 - (l-h(t-y)) dz2 (4) 

where h is the dimensionless strength of the gravity wave. (Note 
that I assume throughout that c = h = G = 1). The equation of 
motion for the beam ~1 along the z arm becomes 

a2 a2 
a~ ~1 - (l+h(t)) 3z2 ~1 o (5) 

Assuming a solution of the form 

~ _ ~ i 8(t,z) 
"'1 - "'10 e 

where 8 is a rapidly varying phase, the eikona1 approximation 3 
gives the equations 

o 

(6a) 

(6b) 
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(The other eikonal equation kJ.! 
if the above two equations are 
travelling solutions are given 

k = 0 is automatically satisfied 
\lOY 

satLsfied). Right and left 
to lowest order in h by 

8 = 8 (±)(t±z) + t fh(t-y) e(±)(t-z) 

- t fh(t±z-y) e(±)(t±z) 

(7) 

where the prime denotes the derivative, e(±) are arbitrary func
tions and the function fh is definerl by 

fh( w) = fWh(E;) dE; (8) 
o 

The solution for ~ along the y = 0 plane is now given by 

~ ~o expi (8_(t-z) + t(fh(t) 

+ ~o expi (8+(t+z) + t(fh(t) 

fh(t-z)) 8~(t-z)) (9) 

The boundary condition at the mirror located at z = L+ql 
(where L is the equilibrium position of the mirror) is that ~ is 
zero there. Therefore we have 

~ 
o 

~ , 
o 

8+(t+L+q(+)) + t(fh(t) - fh(t+L+q)) e~(t+L+q) 
1 

= 8_(t-L-q(t)) + I(fh(t) - fh(t-L-q)) e~(t-L-q) 

(10) 

2 If we assume q(t) to be very small such that terms of order q or 
q h can be neglected, and if we assume q « 1 (where the dot de
notes time derivative), the solution is 

1 , 
e+(t) = e_(t-2L) Z(fh(t,O) - fh(t-2L,0)) 8_(t-2L) (11) 

-2 q(t-L) 8~(t-2L) 

2 where I have also dropped terms of order h 0 

The net phase shift when the light returns to z=O, over what 
it would have been had h = q = 0, is given by 

1 
~ 8(t) = (-2q(t-L) + I fh(t) - fh(t-2L)) 8~(t-2L) (12) 

The net phase shift is thus given by a combination of the motion 
of the mirror (noise) and the effect of the gravity wave on the 
light (signal). 

In the x arm, which I will assume to have the same length L, 
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the phase shift due to the gravity wave is minus that in the z 
arm. Assuming that 68 in both arms is small, recombining the 
two beams at x = z = 0 by means of a beamsplitter and looking at 
the difference port we have a signal there of 

where 

~T = ~n e i8 (t-2L) + 

1 Ii (-2ql (t-L) 

+2q2 (t-L) 

+ ~Uh(t) 

8!(t-2L) cJ10l 

8~(t-2L) cJ102 ) 

- fh(t-2L» cJ1 

cJ1n = (cJ10l - cJ1 02)/1:f 

cJ1 s = (cJ10l + cJ1 02 )/1:f 

(13) 

} 
s 

(The beamsplitter is assumed to transmit the sum and difference 
signals over 1:2. The I:f is necessary to conserve the total 
particle number). 
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The above has been a classical analysis of one mode of the 
field which begins with phase 8(t) at z=O. I will now quantise 
the system. cJ11,cJ12 now become quantum Heisenberg operator, as does 
q. h is assumed to be a classical field. The above solution will 
be assumed to also be sufficiently good approximation to the 
solution for the quantum system. (Statements like "q or q is 
small" now mean that in all states of the system of interest the 
expectation value of q or q and expectation values of relevant 
powers of these operators are sufficiently small, or,the 
probability that q is larger than a fraction of wavelength of any 
light frequency of interest or that q is not much less than the 
velocity of light is small). 

We will characterise the various modes of the light by their 
frequency w on entering the interferometer at z=O. In this case 
8(t) is wt and 8' is w. Furthermore, the laser is assumed to put 
out light at a fixed frequency ~with amplitude I:f A and all other 
frequencies are assumed to have negligible intensity. The laser 
is assumed to shine into the "sum" input port, so that 

<cJ1 1(t» = < cJ1 2(t» = (Ae-iwot + c.c.) 

(i.e. both arms of the interferometer have light of the same 
intensity and phase entering them). 

We can now write the input field cJ1Ii (i=1,2) in either arm 
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at x = z = 0 as 

~i;) = {(A e iwot + J ~i(w) e iwt) + herm. conj.} (14) 
w>o 

~ 

where I will again assume the quantum operators ~ are "small" with 
respect to A. 

At the output port, the operator output signal will now be 
given by 

r ~ iw (t-2L) 
~T = (J~n(w) e dw + Herm. conj.) 

+ 2(q2(t-L) - ql(t-L»(A e iwo (t-2L) - c.c.) (15) 

+ t(fh(t) - fh(t-2L» (A e iwo (t-2L) - c.c.) 

where products of $ with ql or q2 have been dropped. 

This expression has two noise components and one signal. 
The signal is the term proportional to the gravity wave. The 
noise is of two forms. One is the noise due to the quantum 
nature of the light itself (terms prop. to $n) and the other is 
the noise due to the motions of the mirrors. These two noise 
sources are not strictly independent however. Part of the mirror 
motion is due to the fluctuations in the radiation pressure on 
the mirrors, which ultimately is due to the quantum nature of the 
light. Instead of analyzing the noise at this stage, it will be 
more illuminating to study the motion of the mirrors first. 
Before we do that however, let us decide on what we are going to 
do with the output signal ~T' We must decide what property of 
this quantum operator we wish to measure. Since virtually the 
only light detector is a photomultiplier, I will assume that we 
will measure the number flux operator of the outgoing field. 
Furthermore, since I want to measure h, not h2 , I will mix the 
output field with a "classical" field of amplitude (B eiwo(t-2L)+ 
c.c.) and then detect the number flux out of the interferometer. 
Although there is no strictly classical field, we could mix ~T 
with a quantum field X with a very small mixing angle, a. The 
measured field will be 

~M = cos a ~T + sin a X 
B e-iw (t-2L) 

cos a ~T + sin a( sin a 

(16) 
~ 

+ c.c. + X ) 
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where X is the quantum part of the X field. If a is sufficiently 
small we can make the effect of X on any measured property as 
small as we want. 

The number flux operator at time t for the field ~M is given 
by 

N(t) = ~2· [~(+)(t) ~(-)(t) - ;(+)(t) ~(-)(t)] 
M M M M 

~ 000 IBI2 + i (B* ~+iwo(t-2L)(_iWo ~i-) (17) 

+ B e-iWo (t-2L)(_iW ~(+) - ~(+») 
oTT 

I have assumed that B is sufficiently large that terms of order 
~T2 can be neglected. Substi~uting the expression for ~T in terms 
of the Fourier components of ~ and qi we finally have 

where 

Ih(]1) 

qn(t) 

~n(t) 

= (~ (1 - e2i]1L) h(]1» 
2]1 

= ql(t) - q2(t) = Jqn(]1) ei ]1(t) d]1 

= ~ (~l(t) - ~2(t» = ~ J~(W) e-iwt dw 
12 12 

(18) 

(19a) 

(19b) 

(19c) 

To evalulate the qi we need a model for the motion of the 
masses in the z or x direction. Let us again concentrate on the 
z arm mass. I will assume that the mirror is suspended as 
simple harmonic oscillators with respect to its motion in the z 
direction. Furthermore, it is damped by means of a coupling to 
some damping field~. The interaction of the light beam with the 
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mirror masses is by means of the radiation pressure of the light 
on the mirror. The resultant equation of motion of the mirror 
in this simple model is given by 

Mq + ( ~2 + 2 "b2 IAI2)q + m 2q= __ e: 1jJo(t) + 2 W0
2 IAI2 

(20) 

- 2 Wo I«W -~) A ~t(w -~) + A*(w~) ~(w +~»e-i~(t-L)d~ 
o 0 0 0 

(In deriving this expression I have used the model coupling to the 
1jJ field of Unruh (1980)~) In the expression for the pressure on 
the mirror by the light (eq. 3), I have neglected all terms which 
are smaller than first order in A and higher order than first in 
q. 

The term proportional to IAI2 is a constant force on the 
mirror and could be eliminated by redefining the equilibrium 
position for the mirror or by imposing another equal but opposite 
force on the mirror. The two terms in 1jJo and ~ represent quantum 
fluctuating forces on the mirrors due to the damp1ing field and 
the light beams respectively. Note that the damping coefficient 
of the oscillator depends both on the damping field and the light 
beam. This damping by the light can be easily understood. If 
the oscillator has a velocity q, the light reflected from the 
mirror will suffer a red shift of wo (2 q/c). Each outgoing photon 
will therefore have IT wo(2 q/c) less momentum than it would have 
if q were zero and will therefore have transfered that much less 
momentum to the mirror. If there are n photons per second, this 
will correspond to a force which is n tt wo(2 q/c) less than if 
the mirror were at rest. Since IAI2 Wo equals n we obtain the 
same damping coefficient as in the above equation. 

We can solve this equation for the Fourier component, qi(~)' 
of the displacement. In particular we will be interested in those 
frequencies which are much larger than the fundamental fre
quency of the mirrors, n. (I will assume both mirrors have the 
same frequency). The solution is 

At * A ) q(~) = {i~e: 1jJ(~) - 2 wo(A(wo-~)~ (wo-~) + A (wo+~)~(wo~) 

xe+i]JL}/E(~) 

(_M~2 _ i~ ( ~2 + 2 wo2 1A12) + n2) 

2 ., - M~ 

(21) 

Substituting this expression for the q of each mirror into 
the equation for N(t) we finally obtain (after using ~ « w ) o 
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,.. i 2 2e: -iliL 
Wo Mli WD(lI) e 

4 "W 3 
1 * 2 *2 B * + __ 0_ (B I AI - BA ) ] 
M\.l2 3 

4iw 2 * 2 
[B + --+ (BIAI - B A)]} 

MlJ 

* * 2 i(B A - BA ) Wo Ih(lI)e-i21IL 
212 

1 where WD = -- (W - W20) 12 10 
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(22) 

* To maximize the sensitivity we must obviously choose B A to 
be purely imaginary i.e. 

* B A = i IBI IAI 

This finally results in the following expression for the lith 
Fourier component of the number flux 

2 

e-2ilIL N(lI) = IBI2 w O(lJ) + IBIIAI 2wo e: W (lI) 
o Mli D 

(23) 

* 8iw 3 2 
+ Wo { i D(wo+lI) B [ 1 + M\.l~ IAI ] (24) 

8iw 3 
+ ;Dt(wo -lJ) B [1 - ~ IAI2]} 

Mp 

Ih(lI) -2ilIL e 

It is clear that to make the quantum noise of the light small 
we must choose the initial state of the ~D field such as to make 
the fluctuations of the operators 

i(wo + 1I) e iX (lI) + i t (wo- lI ) e-iX (lI) 

small for all frequencies lJ of interest. Here I have defined X(lI) 
by 
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This is possible if we place the ~D field into the generalized 
squeezed state IGs>, defined by5 

{cosh r(~)~(wo+~)eiA(~) + sinh r(~)$t(wo-~)e-iA(~1IGs>= 0 (26) 

Note that this is a true squeezed state10nly if ~ = O. At other 
frequencies this state contains correlations between the frequen
cies wo+~ and roo-~. If the ~D field is placed into one of these 
generalized squeezed states, and the ~ field is assumed to be in 
its vacuum state, we can calculate theOfluctuations in the Fourier 
components of the number operator. We have 

and 

< N(~) > = IBI2 Wo 6(~) 

+ IBIIAI Ih(~) 
12. 

-2i~L e 

< N(~) N(~'» -<N(~) > < N(~') > = 

224 2 
81BI IAI wo (M~)(~') < ~D(~) ~D(~') > 

3 
Wo 2 

+ -2- IBI I 1 + 
8i w 3 I A 12 8i w 3 I A 12 

o II 1 + __ o::.--~_ 

x < 

M~2 M~,2 

($(wo~)eiA(~) + ~t( o-~)e-iA(~»($(wo+~')eiA(~') + 

-2r(~) 
_e-,--__ } 

27TW 
o 

where I have used the relations 

(27) 

(28) 

(29) 

Note that by choosing r(~) SUfficiently large the term due to the 
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quantum nature of the light can be made as small as we want. 

To obtain some feeling for what this expression means physi
cally, let us substitute some numbers for a realistic interferome
ter into this expression. The total power P going into the inter
ferometer is given by (remembering that I have used n = c = 1 to 
derive the above expression). 

tP = 200 2 IAI2 (30) 
o 

We have (after reinstating c and h into the expressions) and 
defining Yd = s2/4M, 

<N(~) N(~'» - <N(~»<N(~'» 

2 32 Y d 000 lP 
=O(~+]l') IBI wo{-----6(~) 

1f~ ~ Mc2~ (31) 
-2r(~) 4w ~ 2 

+e2 (1+( 0:'""2»} 
1f ~ Mc ~ 

There are two power levels of interest: The first is when the 
quantum noise introduced because the fluctuating radiation pressure 
driving the mirrors equals that due to the direct noise 

(PI = (MC2 ~) -~-4 00 
o 

(32) 

and the other when the noise due to the damping of the oscillator 
equals the direct noise 

ID ~ (~ (2»=_~_ ... 
v- 2 = l6y d 4 00 0 M c ~ l6y d \['" 1 (33) 

Since by assumption ~ » y d' 1P2 will be larger than IPI. This 
implies that the quantum nature of the light is responsible for 
the dominant noise at all power levels if the initial state is 
unsqueezed. For M = 1 kg, ~ '" 10'+ hz, 00 '" 1015 hz, we have 
<PI ~ 2.5 x 109 watts. Therefore, at al~ forseeable power levels 
for real interferometers, the dominant noise source will be the 
direct quantum light noise (which has been called the photon 
counting noise by Caves). Only if the light state is strongly 
squeezed will the damping fluctuations of the mirror become 
important. 

If the damping bath due to the ~ fields is thermal with a non 
zero temperature T, the first term is multiplied by a factor of 

s = (1 + 2/(e~/kT - 1» 
T (34) 
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For sufficiently high temperatures this becomes 2kT/h~ which could 
result in a significant noise from this damping field. For 
frequencies ~=10~ hz and T = 300 K, this factor is 8 x 109 • For 
Yd = 10-~/sec, the power at which this noise source becomes 
significant is 

1O~ 
~2T = 16 x 10-~ 2.5 x 109/8 x 109 

2 x 106 watts 

again a rather unrealistic figure. Even if the mirrors were 
critically damped and had a period of 1 sec, the power level for 
this source of noise to be most important would still be about 100 
watts. (The effective temperature of seismic and suspension noise 
on the mirrors could of course be much greater than room tempera
ture, reducing this noise will be one of the chief experimental 
difficulties) • 

Finally we will not be measuring N(~) directly. Rather we 
will be measuring some frequency component ~o of N(t) over some 
time period T. Furthermore, we will be measuring either the sine 
or cosine phase. We have 

fT+T 
N (p ,T) Z N(t) cos P t dt 
cOT 0 

and similarly for the sine component N • 
2 ' s (~N) we find they are both of order 

Evaluating (~N )2 and 
c 

s 

TIBI 2w {16YdW ~ 
(~N)2 ~ 4TI 0 P 2(M~2~ ) ST 

o 0 

(35) 

+ 2 

while the signal is of order 

<N(p ,T» ~ W 21BI IAI(L/c)h(p ,T) T. 
o 0 0 

The signal to noise ratio is therefore of order 

-2r [ 4w ID j16Y dW.4' 
e 1+(...:...::::cl.. )2-+ 0 S 
"2 II (Mc 2p) P (Mc2~ ) T 

o 0 0 0 

(36) 

where I have dropped factors of order unity. 
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One important point to mention is that the above expression 
for the noise is valid only as long as the terms proportional to 
$T2 can be neglected. As r gets larger (higher squeezing) these 
terms become more important. Crude estimates suggest that onc.e 
er >IBI2/3, these terms will dominate the terms we have retained 
and the noise will again increase with increasing r. Neglecting 
the noise due to the damping field, this suggests that 9ge 
maximum signal to noise increases only as Bl/3 or (PB)l with 
the optimal value of the squeezing parameter r. 
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In the above I have given a prescription for a generalised 
squeezed state which obeys an equation like eq. 26. Is such a 
generalised squeezed state possible? The answer is yes, and it 
should be realised by a three wave mixer. Consider a non linear 
medium which has an interaction with light such that the energy 
has a term which goes as ~~3. Supply a pump wave with frequency 
2wo and amplitude~. The linea~ised equations of motion for 
the quantum field ~ = ~ - (A e-12wO (t-x) + c.c.) are of the 
form 

2" 2~ 
.?~. _0 _'!.' = ~(A -iwo (t-x) + ) dt 2 dX2 ~ '!.' e c.c •• (37) 

"~ -(w +11) (t-x) 
~Triting <P =J"'()l,t)e 0 d)l where ~()l,t) is slowly varying 
in time, we have 

- 2i(wo+)l) ~: ()l,t) ~ ~A~(-2wo+)l,t) 
~A~t(-)l,t) 

The solution is 

A A iA At 
<p()l,t) = cosh crt <p()l,O)+ TAT sinh at ~ (-)l,O) 

with 

(38) 

(39) 

If the waves travel in the medium for time T and the initial state 
of the ~ field is the vacuum so that 

~ ()l,O) 10> = 0 

then the stae 10> will be a generalised squeezed state for the 
modes leaving the medium whose frequencies are near Wo with 
the squeezing parameter r given by aT. 
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In conclusion, the dominant quantum noise source in the 
interferometric readout is that due to the quantum nature of the 
light. This noise source can be reduced an arbitrary amount by 
placing the state going into the non laser input port of the 
interferometer into a generalised squeezed state. 
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