
Physics 501
Midterm Exam
Feb 28 2022

This exam is 1hr 15 min (75 min) in length. It is closed book.
This exam has 5 questions, all of equal value.
When the exam has been marked, and handed back to you, you will have

the option of redoing any of the questions on which you did not get full marks
and handing the result in for remarking. As your midterm mark you will get the
average of the mark you received on the midterm writing itself and the mark
you get on the redo of the question, but in no case will you get less than that
the mark you received on the midterm marking itself. This ”re-do” will be due
1 week after the results of the marking of the original midterm are sent back to
you, with no extention of that time. You may discuss this redo with others, and
use any notes, text-books, etc. in doing so, except you may not simply copy
someone else’s solution(s).

1. Consider the sigma matrix

σθ = cos(theta)σz + sin(θ)σx (1)

and the Hamiltonian for this system of

H = 0 (2)

At 9AM σz was measured and found to have a value of +1. At 11AM σx
was measured and found to have a value of +1. At 10AM σθ was measured .

a) What is the probability that the value of +1 was found this measure-
ment,as a function of θ given the above conditions.

—————————————-

Pθ,1 = | 〈x, 1| |θ, 1〉 |2| 〈θ, 1| |z, 1〉 |2/N (3)

Pθ,−1 = | 〈x, 1| |θ,−1〉 |2| 〈θ,−1| |z, 1〉 |2/N (4)

where N is chosen so that the sum of the two probabilities is 1.
Now assuming |z, 1〉 = |+〉 and |z,−1〉 = |−〉 then

|x, 1〉 = 1√
2
(|+〉+ |−〉) (5)

|x,−1〉 = 1√
2
(|+〉 − |−〉) (6)

and

|θ, 1〉 = (cos(θ/2) |+〉+ sin(θ/2) |−〉) (7)

|θ,−1〉 = (cos(θ/2) |−〉 − sin(θ/2) |+〉) (8)
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Thus

Pθ,1 = | 1√
2
(cos(θ/2) + sin(θ/2))|2|cos(θ/2)|2/N (9)

=
1

2
(1 + sin(θ)cos2(θ/2)/NPθ,1 = | 1√

2
(cos(θ/2)− sin(θ/2))|2|sin(θ/2)|2/N (10)

=
1

2
(1− sin(θ))sin2(θ/2) (11)

and

N =
1

2
((1 + sin(θ))(cos2(θ/2) + (1− sin(θ)(sin2(θ)) (12)

=
1

2
(1 + sin(θ)(cos2(θ/2)− sin2(θ/2)) (13)

=
1

2
(1 + sin(θ)cos(θ)) =

1

2
(1 +

1

2
sin(2θ)) (14)

*****************************************************
b) If σθ was weakly measured at time 10AM instead of exactly measured,

what was the weak expectation value of σθ as a function of θ.
———————————————————
The weak value is an operator A is given by

W (A) = 〈f |A |i〉 / |f〉 |i〉 (15)

where |i〉 is the intial state and |f〉 is the final state.
In this case |i〉 = |+〉 ; |f〉 = 1√

2
(|1〉+ |0〉) and thus

W (A) = (〈+|+ 〈−|)(cos(θ)σz + sin(θ)σx) |+〉 / 〈+| |+〉 (16)

= cos(θ) + sin(θ) (17)

sinceσx |+〉 = |+〉 and (〈+|+ 〈−|)σx = (〈+|+ 〈−|)
*********************************************************************

2. Consider the Hamiltonian

H = −1

2
p2 (18)

Consider the complex putative solution of the classical equations

x = 1 + it (19)

a)Show that this is indeed a solution of the classical equations of motion. What
is p for this mode?

———————————————–
The equations of motion are

∂tx = −p (20)

∂p = 0 (21)
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Thus this function clearly satisfies the equations of motion with p = −∂tx = −i.
**************************************
b)What is the norm for this mode?
————————————————

< x, x >= i(x∗p− p∗x) = 2 (22)

Thus the normalized mode is

x =
1√
2
(1 + it) (23)

p = − 1√
2
i (24)

********************************************
c)What is the annihilation operator corresponding to this solution in terms

of the quantum momentum and position operators at time t = 0 and what
is the annihilation operator in terms of the quantum momentum and position
operators at time t?

————————————————–
The quantum equations of motion are

∂tX = −P (25)

∂tP = 0 (26)

which has solutions

X = X0 − P0t (27)

P = P0 (28)

The annihilation operators is

< x,X >= ix∗P − p∗X = i((1− it)P − iX) = i((1− it)P0 − i(X0 + tP − 0) = (iP0 +X0) (29)

3. Give the argument from Hardy’s chain, that classical Mechanics cannot
mimic the results from a quantum system. Go into some detail.

—————————————
The essential point is that for two systems, we have that a true statement

about the value of an operator A of the first system always implies the true
of the value of an operator C of the second. The truth of the C of the second
always implies the truth B a value for the first. The truth of the value of B
always implies the truth of D of the second. But the truth of A almost never
implies the truth D of the second. Ie,

A → C → B → D (30)
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But A almost never implies D
To amplify, consider the state

|ψ〉 = sin(θ) |+〉 |1〉+ sin(θ) |−〉 |1〉+
√

(1− 2 sin(θ)2) (31)

Then if we take A to be that the measurement on the system of the state

|A〉 = |+〉 (32)

implies that

|C〉 = |1〉 (33)

always. Similarly if |C〉 is measured, then

|B〉 = 1√
2
(|+〉+ |−〉) (34)

is always obtained. Finally if |B〉 then

|D〉 = 1
√

2sin(θ)2 + 1
2 (1− 2 sin2(θ))sin(θ)

√
2 |1〉+

√
1−2 sin(θ)2√

2
|0〉

(35)

Now if A is measure, then the state of the second system is |1〉, and The prob-
ability that you would measure D would be

P =
4sin2(θ)

1 + 2sin2(θ)
(36)

As θ goes to 0, the probability goes to 0.
Ie, if we assume that , if always a measurement gives a certain value, then

classical physics would imply that it always has that value. But this is violated
by this system.

It is not necessary that all of the details are present for full marks. But the
logical chain should be there, and that there exists some state for which the
probability of the D given A becomes very small.

***********************************************

4. Show that the unitary matrix

U = ei(αP−βX) (37)

is a translation operator on both X and P (Ie, U †XU = X + µ for some
value of µ, and similarly for P ) P and X are the usual momentum and position
operators. What linear combination of the operatorsX and P does this operator
not change at all?

————————————————— There are a few ways of doing this.
One is to expand U

U † =
∑

n

(
1

n!
(−i)n(αP − βX)n (38)

4



So

XU = (XU − UX) + UX
∑

n

1

n!
(−i)n

n
∑

r=1

(αP − βX)r[X,αP − βX](αP − βX)n−r (39)

= αi
∑

n

1

(n− 1)!
in−1i((αP − βX)n−1 + UX = −αU + UX (40)

so

U †XU = (−α+X)U †U = (−α+X) (41)

Similarly

U †PU = −beta+ P (42)

Now, αP − βX commutes with U , so U does not alter it.
Another way is to use the Campbell Baker Hausdorf relation Since [X,P ] is

a c-number we have

U = ei(αP−βX) = eiαP e−iβXe[iαX,−iβP ]/2 = eiαP e−iβXeiαβ/2 (43)

Then

U †XU = eiβXe−iαP eiαβ/2Xe−iαβ/2eiαP e−iβX (44)

= eiβX(e−iαPXeiαP )e−iβX (45)

eiβX(X − α)e−iβX = X − α (46)

And similarly for P
************************************************************

5. Consider the state for two particles, with σ3 eigenstates |+〉 , |−〉 for the
first particle and |1〉 , |0〉 for the second:

|ψ〉 = 1√
2
|+〉 |1〉+ 1

2
(|−〉 |1〉+ |−〉 |0〉) (47)

a) What is the density matrix for the second particle.o
——————————-

ρ = |ψ〉 〈ψ| = 1

2
(|+〉 |1〉+ 1√

2
(|−〉 |1〉+ |−〉 |0〉))(〈+| (48)

bra1 +
1√
2
(〈−| |1〉+ 〈−| 〈0|) (49)

(50)
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Then the trace over the first particle, recalling that 〈+| |+〉 = 〈−| |−〉 =
1; 〈+| |−〉 = 0 give

TR1ρ =
1

2
(|1〉 〈1|) + 1

4
(|1〉+ |0〉)(〈1|+ 〈0|) (51)

=
3

4
|1〉 〈1|+ 1

4
|0〉 〈0|+ 1

4
|0〉 〈1|+ 1

4
|1〉 〈0| (52)

This is the matrix

1

4

(

3 1
1 1

)

(53)

-*************************************88
b) What are the eigenvalues for the density matrix of the second particle

and the eigenstates for the density matrix of the second particle.
——————————————
The eigenvalue equation is

λ2 − λ+
1

8
= 0 (54)

which has solutions

λ = (
1

2
± 1

2

√

1− 1

2
) =

1

2
(1± 1√

2
) ≈ .854, .146 (55)

******************************************
c) What are the eigenvalues for the density matrices for the first particles?
—————————————-
By the Schmidt decomposition, the eigenvalues of the two density matricies

are the same.
******************************************
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