
A Simple Landau-Zenner type model

W. G. Unruh
CIfAR Cosmology and Gravity Program

Dept. of Physics

University of B. C.

Vancouver, Canada V6T 1Z1

email: unruh@physics.ubc.ca

A simple example of the Landau-Zenner type transition is presented which is solveable in terms
of elementary functions.

In 1932 Zenner[2], improving on a simultaneous perturbative treatment by Landau[1], was presented for the tran-
sition between weakly interacting levels of a two level system, to examine the transitions between the energy levels
of this system for a time dependent Hamiltonian. The solution, in terms of Weber functions, is not very transparent.
Let us present a model which is solvable in terms of elementary functions instead, which is at least of some pedagogic
value.
The Hamiltonian for the system, being a two level system can be written in terms of the Pauli matrices, and we

shall write it as

H(θ) = f(θ)σzΘ(−θ) + (cos(θ)σx + sin(θ)σx)Θ(θ)Θ(π − θ)− f(π − θ)Θ(θ − π) (1)

where f(θ) is taken to be some decreasing function of its (negative) argument such that f(0) = 1 and ∂θf(0) = 0. A
simple one would be to have f(θ) = −θ for θ << 0. (It will actually not matter what the form is of f(θ) but this
corresponds more closely with the usual form of the problem). The Energy Eigentates are then given with

E(θ) = ±(f(θ)Θ(−θ)− f(π − θ)Θ(θ − π) + Θ(−θ(π − θ)) (2)

For example, if we choose f(θ) = 1− θ2

1−θ the energy eigenstates would look as in figure 1.
If we choose our states such that

σz|0〉 = −|0〉; σz|1〉 = |1〉 (3)

FIG. 1: The energies eigenvalues of the Hamiltonian. The dotted line is the energies if the σx term in the Hamiltonian is set
to 0, removing the coupling between the states.
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Then the eigenstates are

|0θ〉 = cos(θ/2)|0〉+ sin(θ/2)|1〉 (4)

|1θ〉 = cos(θ/2)|1〉 − sin(θ/2)|0〉 (5)

for 0 < θ < π.
Now assume that θ(t) = t/T for some T. A large value of T would corresponnd to an adiabatic transition (slow

transition) while T << 1 would correspond to a diabatic transition (fast transition).
Define the state of the system to be given by

|φ〉 = α(t)|0〉+ β(t)|1〉 (6)

which will have the Schroedinger equation

t < 0 or t > π (7)

iα̇ = (−f(θ(t))Θ(−t) + f(θ(π − t))Θ(t− π))α (8)

iβ̇ = −(−f(θ(t))Θ(−t) + f(θ(π − t))Θ(t− π)β (9)

t > 0 and t < π (10)

iα̇ = −cos(θ(t))α+ sin(θ(t))β (11)

iβ̇ = sin(θ(t)α+ cos(θ)β (12)

where ˙ = ∂t. Except between 0 < t < π these equations are trivial to solve (|α| and |β| are constant), so we will
concentrate on on the region between 0 and π.

Rewriting these equations in terms of α+ iβ and α− iβ (where, since α and β will be complex there are not complex
conjugate of each other), we get

i∂t(α+ iβ) = −eiθ(t)(α− iβ) (13)

i∂t(α− iβ) = −e−iθ(t)(α+ iβ) (14)

Defining

Z1 = e−iθ(t)/2(α+ iβ) (15)

Z2 = eiθ(t)/2(α− iβ(t) (16)

to give

i∂tZ1− θ̇(t)/2Z1 = −Z2 (17)

i∂tZ2 + θ̇(t)/2Z2 = −Z1 (18)

from which we find, since θ̇(t) is constant, that both Z1 and Z2 obey the same equation

−∂2
tZ − θ̇(t)2Z = Z (19)

or

Z = aeiωt + be−iωt. (20)

However, the boundary condition at t = 0 will differ. Let us assume that we started with the system in the ground
state of the Hamiltonian for t < 0, or α(0) = 1 β(0) = 0. The Schroedinger equation will have |α| = 1 and |β| = 0
for all t < 0. However

∂tZ1(0) = −1Z2(0) + θ̇(0)/2Z1 = −1 +
1

2T
(21)

∂tZ2(0) = −1Z1 − θ̇(0)/2Z1 = −1− 1

2T
(22)
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from which

a1 + b1 = 1; a2 + b2 = 1 (23)

iω(a1 − b1) = −1 +
1

2T
; iω(a2 − b2) = −1− 1

2T
(24)

a1 =
2iTω − 2T + 1

i2ω
a2 =

2iTω1− 2T − 1

i2ω
(25)

b1 = −2iTω + 2T − 1

2ω
b2 = −2iTω + 2T + 1

2ω
(26)

(27)

Going to t = πT we have

α(πt) = (iZ1 − iZ2)/2 =
−sin(π

√
4T 2 + 1/2)

2
√
4T 2 + 1

(28)

β(πt) = (Z1 + Z2)/2 =
(
√
4T 2 + 1− 2T )e−iπ

√

4T 2+1/2 + (
√
4T 2 + 1 + 2T )eiπ

√

4T 2+1/2

2
√
4T 2 + 1

(29)

as the generic solution for arbitrary speed of transition.
In the limit at T → 0, we have

α(π) ≈ −1 + 2T 2 +O(T 4) (30)

β(π) ≈ 2iT +O(T 2) (31)

Ie, in the sudden transition (T¡¡1), system will remain in the state |0〉 which is the higher energy eigenstate of the
Hamiltonian after the transition. Ie, this would be as if the σx term in the Hamiltonian were 0, and the σz had a
continuous term σz connecting f(θ) to −f(π − θ). if T is small, the probability that there was a transition to the
other , the ground state, is proportional to T 2.
In the case that τ = 1

T goes to zero, the adiabatic limit, we find that

α ≈ sin(πT )

4T
+O(1/T 2) (32)

β ≈ ( 1
4T )e

−iπ
√

4T 2+1/2 + (4T + 1
4T )e

iπT (1 + i π
4T )

4T
= eiπT (1 + i

π

8T
− (1 + π2

8 )

16T 2
+ e−iπ/T 1

16T 2
+O(1/T 3) (33)

Ie, after the transition, the probability is large that system is in the |1〉 state, which is the lower energy eigenstate
after the transition. Unlike the Landau-Zenner case however, the probability of being in the higher level falls as 1/T 2

rather than exponentially in T .
In figure 2 is plotted the probability of the system remaining the state |0〉 as a functionof the transition time.

Figure2 gives the complementary probability of making the transition to the state |1〉 which is the ground state of
the Hamiltonian after the transition.
The above assumes that the energy at the transition was 1. One can scale this solution, by taking t → ǫt and

T → ǫT . where epsilon is the half energy difference between the upper and lower states during the transition.
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FIG. 2: The probability of remaining in the |0〉 state

FIG. 3: The probability of making a transition to the orthogonal state during the regime of level interaction. The transition
takes place around T=.4 (50-50 chance of being in the lower or higher energy eigenstate)


