
Physics 501-20
Interaction representation and Detectors

Let us say that we have a system with a Hamiltonian which we can write in
two parts

H = H0 +Hi (1)

where H0 will be a Hamiltonian for which it is easy to solve the Heisenberg
equations of motion for the operators.

In the Schroedinger representation, the equation for the state |ψ, t〉 obeys

|ψ, t〉 = U |ψ, 0〉 (2)

where |ψ, 0〉 is the intial Schroedinger state. while U is the opertor which solves
the equation

i∂tU = HU (3)

This is formally solved by

U = Texp(−i
∫ t

0

Hdt′). (4)

where T is is the ”time ordering operator” so that

Texp(−i
∫ t

0

H(t′)dt′) = lim
∆t→0

Π0
n=(t/∆t)−1e

iH(tn)∆t (5)

where tn = (n+ 1
2 )∆t. and H is assumed to have have an explicit time depen-

dence.
Now consider the operator

U0 = Te
−i

∫

t

0
H0dt

′

(6)

where H0 is assumed to be independent of time. It obeys

∂tU0 = −iH0U0 (7)

Consider the time dependent state

|ψI , t〉 = U
†
0U |ψ, 0〉 (8)

Then

i∂t |ψI , t〉 = U
†
0 (−H0 +H)U |ψ, 0〉 (9)

(10)

Since H = H0 +HI where HI is the interaction Hamiltonian, we have

i∂t |ψI , t〉 = U
†
0 (HI)U0 |ψI , t〉 (11)
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Now if HI is a sum of polynomials of whatever fundamental operators there are
for the system, (eg, Ψ, Π, σw,...), then

U
†
0H(Ψ,Π, σw...)U0 = H(U †

0ΨU0, U
†
0ΠU0, U0σwU0, ...) (12)

Ie, Hi will be a function of the explicitly time dependent dynamic operators.
Now, assuming H0 is not explicitly time dependent, and neither is the oper-

ator A,

i∂t(U
†
0AU0)) = U

†
0 (−H0A+AH0)U0 = [U †

0AU0, H] (13)

But this is just the operator equation for the Heisenberg representation of the
operator AH = U

†
0AU0 if the Hamiltonian is H0. Thus the Interaction represen-

tation obeys a Schroedinger equation with the interaction Hamiltonian where
the operators in that Hamiltonian are replaced by the explicitly time dependent
dynamical operators which obey the Heisenberg equations of motion with H0.

One thus chooses H0 so that the Heisenberg equations of motion are easily
solvable. For example, we choose it to be the free equations of motion for the
Hamiltonian, or the single particle dynamics of the two level system.

Let us take as an example a quantum field theory for a massive three spatial
dimensioned field φ. The free Hamiltonian is then

H0φ =
1

2

∫

(Π(x)2∇Φ(x) · ∇Φ(x) +m2Φ(x)2)dx (14)

We know that we can choose a set of modes φi(t, x) which obey the field equation

∂2t φi(t, x)−∇2φi(t, x) +m2φi(t, x) = 0 (15)

πi(t, x) = ∂tφi(t, x) (16)

such that inner product

< φi, φj >= i

∫

(φj(t, x)
∗πi(t, x)− πj(t, x)

∗φi(t, x))d
Dx = δij < φ∗j , phii >= 0 (17)

(if they are normalisable modes, or if the subscript is continuous, then it would
be the Dirac delta (δ(i− j)). Then

Φ(t, x) =
∑

i

(Aiφi(t, x) +A
†
iφ

∗
i (t, x)) (18)

Π(t, x) =
∑

i

(Ai∂tφi(t, x) +A
†
i∂tφ

∗
i (t, x)) (19)

If we want to choose Hamiltonian diagonalisation as our definition of the
modes, so that the vacum state is the lowest energy state, then φi(t, x) should
all be chosen so that φi(t, x) is a sum of only functions whisch are made up of
temporal fourier terms which go as e−iωt. One set of modes are

φk(t, x) =
e−i(ωt−k·x)

√

2ω(2π)D
(20)
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with ω = +
√
k2 +m2.

Similarly, if one of the dynamical systems is a two level system, with opera-
tors σx, σy, σz, with Hamiltonian

H0σ =
1

2
Eσz (21)

then the Heisenberg solutions are

σz(t) = σz0 (22)

σ−(t) = σ0−e
−iEt (23)

σ
†
− = σ

†
0−e

iEt (24)

σx(t) = σ−(t) + σ
†
−(t) (25)

σy(t) = −i(σ−(t)− σ
†
−(t)) (26)

Let us say that we have an interaction Hamiltonian which looks like

HI = ǫσxΠ(x0) (27)

Then in the interaction picture, the equation of the state is

i∂t |ψ, t〉 = ǫ(σ0−e
−iEt + σ

†
0−e

iEt)(
∑

i

Ai∂tφt(t, x) +A
†
i∂tφt(t)

∗)) |ψ, t〉 (28)

Writing |ψ, t〉 = |ψ, 0〉+ ǫ |δψ, t〉+ ǫ2.... and keeping only terms to first order
in ǫ, we have

ǫ |δψ, t〉 = ǫ

∫ t

0

(σ0−e
−iEt′ + σ

†
0−e

iEt′)(
∑

i

Ai∂
′
tφi(t

′, x) +A
†
i∂tφi(t

′)∗)) |ψ, 0〉)dt′ (29)

Now let us assume that the state |ψ, 0〉 = |φ〉 |↓〉 where |↓〉 is the −1 eigen-
valued state of σz.Then σ− |↓〉 = 0. Also, as we allow t → ∞, only the
∫

φi(t, x0)e
iEtdt will survive, because only φi(t, x0) has non-zero fourier trans-

form with positive E.
Thus for large t, we have

ǫ |δψ, t〉 = ǫ |↑〉
∑

i

∫

φi(t
′, x0)e

iEt′dt′Ai |φ, 0〉 (30)

If |φ, 0〉 = |0〉, then the Ai destroy this state, and the |δψ, t〉 = 0. There is
no excitation of the detector.

If |φ, 0〉 = A
†
j |0〉, then the detector has a non zero amplitude of being excited.

ǫ |δψ, t〉 = ǫ

∫ t

0

φi(t
′, x0)e

iEt′dt′ |0〉 |↑〉 (31)

and the probability of finding the detector excited will be

Prob↑ = ǫ2|
∫ t

0

φi(t
′, x0)e

iEt′dt′|2 (32)
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Ie, only if the mode has a non-zero amplitude of being at x0 at some time
can there be any probability of the detector being excited. And only if the mode
has a component of its time dependence with frequency E will this probability
be non-zero.

We note that this is just energy conservation– the mode has to have a com-
ponent of energy E if it is to excite the detector whose excited state has energy
E above its lowest state.
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