Physics 501-20
Assignment 4
1)Consider a field ϕ like the field of sounds in a fluid with Lagrangian action

$$
\begin{equation*}
S=\int\left(\left(\partial_{t} \phi\right)^{2}-\left(F\left(\partial_{x}\right) \phi\right)^{2}\right) d x d t \tag{1}
\end{equation*}
$$

Where F is some analytic function of the operator ∂_{x} (ie, we can define F by its taylor series expansion).

For example

$$
\begin{equation*}
\sinh \left(\partial_{x}\right)=\sum_{r=1}^{\infty} \frac{\partial_{x}^{2 r-1}}{(2 r-1)!} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& \sinh \left(\partial_{x}\right) e^{i k x}=\sum_{r} \frac{\partial_{x}^{2 r-1}}{(2 r-1)!} e^{i k x} \tag{3}\\
= & \sum_{r} \frac{(i k)^{2 r-1}}{(2 r-1)!} e^{i k x}=i \sin (k) e^{i k x} \tag{4}
\end{align*}
$$

Ie, $F\left(\partial_{x}\right) e^{i k x}=F(i k) e^{i k x}$
a)Now carry out a coordinate transformation, $y=x-v t$ and find the Lagrangian action in the new coordinates t, y for any function F .
b) What is the momentum conjugate to the field in the t, y coordinates.
c) What is the norm of the field in both coordinates? Ie, show, as I claimed, that the norm is the same in both coordinates even if the Hamiltonian diagonalization frequency changes in the two coordinates.
2) Consider a Harmonic oscillator

$$
\begin{equation*}
H=\frac{1}{2}\left(\omega\left(p^{2}+x^{2}\right)+\tilde{\omega}\left(\tilde{p}^{2}+\tilde{x}^{2}\right)\right) \tag{5}
\end{equation*}
$$

With Annihilation operators A, \tilde{A}.
a) Show that the normalized n quantum state in each case is

$$
\begin{equation*}
|n\rangle=\frac{A^{n}}{n!}|0\rangle> \tag{6}
\end{equation*}
$$

Now consider the some other annihilation operators

$$
\begin{gather*}
B=\alpha A+\beta \tilde{A}^{\dagger} \tag{7}\\
\tilde{B}=\gamma \tilde{A}+\delta A^{\dagger} \tag{8}
\end{gather*}
$$

b)From the commutation relations that B, B^{\dagger} must satisfy, find the relation between the coefficients $\alpha, \beta, \gamma, \delta$ that must be satisfied if B and \tilde{B} are to
be independent annihilation operators. Show that a solution exists if all of $\alpha, \beta, \gamma, \delta$ are real and positive.
c) What is the vacuum state of the operators B, \tilde{B}. Express them in terms of the states $|n\rangle$ and $|\tilde{n}\rangle$ of the original A, \tilde{A}.
d) What is the reduced density matrix of this state for the first A system. Show that this density matrix can be expressed as a thermal density matrix $\rho=N e^{\frac{1}{2} \omega\left(p^{2}+x^{2}\right) / T}$ where N is a normalisation factor. (Show that $\left(\frac{1}{2} \omega\left(p^{2}+\right.\right.$ $\left.x^{2}\right)|n\rangle=\left(n+\frac{1}{2}\right) \omega|n\rangle$. Show that $|n\rangle$ is an eigenstate of ρ with eigenvalue $\lambda(n)$. What is $\lambda(n)$? What is N ?

Recall that Maxwell showed that, in thermal equilibrium, if the energy of a state is E , then the probability of that state is proportional to $e^{E / k_{B} T}$.

