Physics 501-22

Assignment 5

1)Consider a field ϕ like the field of sounds in a fluid with Lagrangian action

$$
\begin{equation*}
S=\int\left(\left(\partial_{t} \phi\right)^{2}-\left(F\left(\partial_{x}\right) \phi\right)^{2}\right) d x d t \tag{1}
\end{equation*}
$$

(There should have been a $\frac{1}{2}$ in front of this! Oh well, I will use it as it stands)
$\mathrm{O}^{* ~}$
Where F is some analytic function of the operator ∂_{x} (ie, we can define F by its taylor series expansion).

For example

$$
\begin{equation*}
\sinh \left(\partial_{x}\right)=\sum_{r=1}^{\infty} \frac{\partial_{x}^{2 r-1}}{(2 r-1)!} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& \sinh \left(\partial_{x}\right) e^{i k x}=\sum_{r} \frac{\partial_{x}^{2 r-1}}{(2 r-1)!} e^{i k x} \tag{3}\\
& =\sum_{r} \frac{(i k)^{2 r-1}}{(2 r-1)!} e^{i k x}=i \sin (k) e^{i k x} \tag{4}
\end{align*}
$$

Ie, $F\left(\partial_{x}\right) e^{i k x}=F(i k) e^{i k x}$
a)Now carry out a coordinate transformation, $y=x-v t$ and find the Lagrangian action in the new coordinates t, y for any function F .

Assume that one has a solution $\phi(t, x)$ of the equation. Then the new solution is $\phi(t, y+v t)$. The $\partial_{t}(\phi(t, x))=\partial_{t} \phi(t, y+v t)-v \partial_{y} \phi(t, y+v t)$ and $\partial_{x}(\phi(t, x))=$ $\partial_{y}(\phi(t, y+v t))$. Thus the equation for in the new coordinates is
$\partial_{t}^{2}\left(\phi(t, x)-F^{2}\left(\partial_{x}\right) \phi(t, x)=\left(\partial_{t}+v \partial_{y}\right)\left(\partial_{t}+v \partial_{y}\right)\right) \phi(t, y+v t)-F\left(-\partial_{y}\right) F\left(\partial_{y}\right) \phi(t, y+v t)$
(The $F\left(-\partial_{y}\right)$ comes from integration by parts of the operator $F\left(\partial_{y}\right.$ since every intgration by parts reverses the sign of ∂_{y}.
$* 8$
b) What is the momentum conjugate to the field in the t, y coordinates.
— Using the same argument and defining $\hat{\phi}(t, y)=$ $\phi(t, x+v t)$ we get the Lagrangian

$$
\begin{array}{r}
S=\int\left(\left(\partial_{t} \phi\right)^{2}-\left(F\left(\partial_{x}\right) \phi\right)^{2}\right) d x d t \\
=\int\left(\left(\left(\partial_{t}+v \partial_{y}\right) \hat{\phi}(t, y)\right)^{2}-\left(F\left(\partial_{y}\right) \hat{\phi}(t, y)\right)^{2}\right) d y d t \tag{7}
\end{array}
$$

The conjugate momentum is $\frac{\delta S}{\delta\left(\partial_{t} \hat{\phi}(t, y)\right.}$ which in this case is $\hat{\pi}=2\left(\left(\partial_{t}+v \partial_{y}\right) \hat{\phi}\right)$
c) What is the norm of the field in both coordinates? Ie, show, as I claimed, that the norm is the same in both coordinates even if the Hamiltonian diagonalization frequency changes in the two coordinates.

The norm is $\int \phi^{*}(t, x) \pi(t, x)-\pi(t, x)^{*} \phi(t, x) d x$ and $\int \hat{\phi}^{*}(t, y) \hat{\pi}(t, y)-\hat{\pi}(t, y)^{*} \hat{\phi}(t, y) d y$ Writing the momentum in terms of derivatives of the field we see

$$
\begin{array}{r}
\int \hat{\phi}^{*}(t, y) \hat{\pi}(t, y)-\hat{\pi}(t, y)^{*} \hat{\phi}(t, y) d y=2 \int \phi^{*}(t, y+v t)\left(\partial_{t}-v \partial_{y}\right) \phi(t, y+v t)-\left(\partial_{t}-v \partial_{y}\right) \phi^{*}(t, y+v t) \phi(t, y \\
=2 \int \phi(t, x)^{*} \partial_{t} \phi(t, x)-\partial_{t} \phi(t, x)^{*} \phi \\
=\int \phi(t, x)^{*} \pi(t, x)=\pi(t, x) \phi
\end{array}
$$

as required
2) Consider a Harmonic oscillator

$$
\begin{equation*}
H=\frac{1}{2}\left(\omega\left(p^{2}+x^{2}\right)+\tilde{\omega}\left(\tilde{p}^{2}+\tilde{x}^{2}\right)\right) \tag{11}
\end{equation*}
$$

With Annihilation operators A, \tilde{A}.
a) Show that the normalized n quantum state in each case is

$$
\begin{equation*}
|n\rangle=\frac{A^{n}}{n!}|0\rangle> \tag{12}
\end{equation*}
$$

- (And now two mistakes in one equation. This should be $\frac{A^{\dagger n}}{\sqrt{n!}}|0\rangle>$
$* *$
\qquad

$$
\begin{equation*}
\left[A, A^{\dagger}\right]=1 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\left(A \dagger^{n}|0\rangle\right)^{\dagger} A \dagger^{n}|0\rangle=\langle 0| A^{n} A^{\dagger n}|0\rangle \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
=\langle 0|\left(A^{n-1}\left[A, A^{\dagger n}\right]+A^{\dagger n} A\right)|0\rangle \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
=\langle 0|\left(A^{n-1}\left(\sum_{r} A^{\dagger r}\left[A, A^{\dagger}\right] A^{\dagger(n-r-1)}+0\right)|0\rangle\right. \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
=\langle 0|\left(n A^{n-1} A^{\dagger(n-1)}|0\rangle\right. \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
=\langle 0|(n(n-1) \ldots(1))|0\rangle=n! \tag{18}
\end{equation*}
$$

Thus to normalise the state we must divide by the square root of this.
$* ~$
Now consider the some other annihilation operators

$$
\begin{gather*}
B=\alpha A+\beta \tilde{A}^{\dagger} \tag{19}\\
\tilde{B}=\gamma \tilde{A}+\delta A^{\dagger} \tag{20}
\end{gather*}
$$

b)From the commutation relations that B, B^{\dagger} must satisfy, find the relation between the coefficients $\alpha, \beta, \gamma, \delta$ that must be satisfied if B and \tilde{B} are to be independent annihilation operators. Show that a solution exists if all of $\alpha, \beta, \gamma, \delta$ are real and positive.

We want

$$
\begin{align*}
{\left[B, B^{d} \text { agger }\right]=\left[\text { tilde } B, \text { tilde } B^{d} \text { agger }\right] } & =1 \tag{21}\\
{[B, \text { tilde } B]=\left[B, \text { tilde } B^{d} \text { agger }\right] } & =0 \tag{22}
\end{align*}
$$

from $\left[A, A^{\dagger}\right]=\left[\tilde{A}, \tilde{A}^{\dagger}\right]=1 \operatorname{and}[A, \tilde{A}]=\left[A, \tilde{A}^{\dagger}\right]=0$ We thus get the 4 equation

$$
\begin{align*}
{\left[\alpha A+\beta \tilde{A}^{\dagger}, \alpha A^{\dagger}+\beta A\right]=\alpha^{2}-\beta^{2} } & =1 \tag{23}\\
{\left[\gamma \tilde{A}+\delta A^{\dagger}, \gamma \tilde{A}^{\dagger}+\delta A\right]=\gamma^{2}-\delta^{2} } & =1 \tag{24}\\
{\left[\alpha A+\beta \tilde{A}^{\dagger}, \gamma \tilde{A}+\delta A^{\dagger}\right]=\alpha \delta-\beta \gamma } & =0 \tag{25}\\
{\left[\alpha A+\beta \tilde{A}^{\dagger}, \gamma \tilde{A}^{\dagger}+\delta A\right] } & =0 \tag{26}
\end{align*}
$$

The first says that $\alpha=\cosh (\phi), \beta=\sin (\phi)$ for some ϕ. The second says similarly that $\gamma=\cosh (\psi), \delta=\sin (\psi)$ for some ψ. Thus the third says that $\cosh (\phi) \sinh (\psi)=\cosh (\psi) \sin (\phi)$ or $\tanh (p h i)=\tanh (\psi)$, which implies that $\phi=\psi$.
c) What is the vacuum state of the operators B, \tilde{B}. Express them in terms of the states $|n\rangle$ and $|\tilde{n}\rangle$ of the original A, \tilde{A}.

$$
\begin{equation*}
B\left|0_{B \tilde{B}}\right\rangle=\tilde{B}\left|0_{B \tilde{B}}\right\rangle \tag{27}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left(\cosh (\phi) A+\sinh (\phi) \tilde{A}^{\dagger}\right)\left|0_{B \tilde{B}}\right\rangle=\left(\cosh (\phi) \tilde{A}+\sinh (\phi) A^{\dagger}\right)\left|0_{B \tilde{B}}\right\rangle=0 \tag{28}
\end{equation*}
$$

Again, we assume that $\left|0_{B \tilde{B}}\right\rangle=F\left(A^{\dagger}, \tilde{A}^{\dagger}\right)|0\rangle$ and that $A=\partial_{A^{\dagger}}, \quad \tilde{A}=\partial_{\tilde{A}^{\dagger}}$ to give

$$
\begin{align*}
& \cosh (\phi) \partial_{A^{\dagger}} F\left(A^{\dagger}, \tilde{A}^{\dagger}\right)+\sinh (\phi) \tilde{A}^{\dagger} F\left(A^{\dagger}, \tilde{A}^{\dagger}=0\right. \tag{29}\\
& \cosh (\phi) \partial_{\tilde{A}^{\dagger}} F\left(A^{\dagger}, \tilde{A}^{\dagger}\right)+\sinh (\phi) A^{\dagger} F\left(A^{\dagger}, \tilde{A}^{\dagger}=0\right. \tag{30}
\end{align*}
$$

which gives

$$
\begin{equation*}
F=N e^{\left(-\tanh (\phi) A^{\dagger} \tilde{A}^{\dagger}\right)} \tag{31}
\end{equation*}
$$

where N is a normalisation factor.
$* 8$
d) What is the reduced density matrix of this state for the first A system.

Show that this density matrix can be expressed as a thermal density matrix
$\rho=N e^{\frac{1}{2} \omega\left(p^{2}+x^{2}\right) / T}$ where N is a normalisation factor. (Show that $\left(\frac{1}{2} \omega\left(p^{2}+\right.\right.$ $\left.x^{2}\right)|n\rangle=\left(n+\frac{1}{2}\right) \omega|n\rangle$. Show that $|n\rangle$ is an eigenstate of ρ with eigenvalue $\lambda(n)$. What is $\lambda(n)$? What is N ?

Recall that Maxwell showed that, in thermal equilibrium, if the energy of a state is E , then the probability of that state is proportional to $e^{E / k_{B} T}$.

$$
\begin{align*}
& N e^{-\tanh (\phi) A^{\dagger} \tilde{A}^{\dagger}}|0\rangle=N \sum_{n} \frac{1}{n!}(-\tanh (\theta))^{n} A^{\dagger n} \tilde{A}^{\dagger n}|0\rangle \tag{32}\\
&=N(-\tanh (\phi))^{n}|n, n\rangle \tag{33}
\end{align*}
$$

Thus the reduced density matrix is

$$
\begin{equation*}
\phi_{R}=N^{2} \sum_{n}\langle n||n\rangle|n\rangle|\tanh (\phi)|^{2 n}\langle n|=\sum_{n} e^{2 \ln (\mid \tanh \phi) \mid}|n\rangle\langle n| \tag{34}
\end{equation*}
$$

If we write

$$
\begin{equation*}
2 l n(\mid \tanh (\phi))=-\omega /\left(k_{B} T\right) \tag{35}
\end{equation*}
$$

where ω is the frequency of the oscillator, then the density matrix is

$$
\begin{equation*}
\rho_{R}=N^{2} \sum_{n}\left(e^{-n \omega /\left(k_{B} T\right)}|n\rangle\langle n|\right. \tag{36}
\end{equation*}
$$

which is just the Maxwell equilibrium state of a quantum harmonic oscillator of frequency ω and temperature T. Note that $\operatorname{Tr}\left(\rho_{R}\right)=1$ which gives

$$
\begin{align*}
N^{2} \sum_{n} e^{-2 n \ln (|\tanh (\phi)|} & =\frac{1}{1-e^{-2 \ln (|\tanh (\phi)|}} \tag{37}\\
N & =\sqrt{1-e^{2 l n(|\tanh (\phi)|}} \tag{38}
\end{align*}
$$

Note that since $|\tanh (x)|<1$ the argument to the exponential is always negative.

