
Physics 501-22
Assignment 5

1)Consider a field φ like the field of sounds in a fluid with Lagrangian action

S =

∫

(

(∂tφ)
2 − (F (∂x)φ)

2
)

dxdt (1)

—————————-
(There should have been a 1

2 in front of this! Oh well, I will use it as it
stands)

O*********************************
Where F is some analytic function of the operator ∂x (ie, we can define F

by its taylor series expansion).
For example

sinh(∂x) =

∞
∑

r=1

∂2r−1
x

(2r − 1)!
(2)

and

sinh(∂x)e
ikx =

∑

r

∂2r−1
x

(2r − 1)!
eikx (3)

=
∑

r

(ik)2r−1

(2r − 1)!
eikx = i sin(k)eikx (4)

Ie, F (∂x)e
ikx = F (ik)eikx

a)Now carry out a coordinate transformation,y = x − vt and find the La-
grangian action in the new coordinates t, y for any function F.

——————————————————
Assume that one has a solution φ(t, x) of the equation. Then the new solution

is φ(t, y+vt). The ∂t(φ(t, x)) = ∂tφ(t, y+vt)−v∂yφ(t, y+vt) and ∂x(φ(t, x)) =
∂y(φ(t, y + vt)). Thus the equation for in the new coordinates is

∂2t (φ(t, x)− F 2(∂x)φ(t, x) = (∂t + v∂y)(∂t + v∂y))φ(t, y + vt)− F (−∂y)F (∂y)φ(t, y + vt) (5)

(The F (−∂y) comes from integration by parts of the operator F (∂y since every
intgration by parts reverses the sign of ∂y.

******************************8
b) What is the momentum conjugate to the field in the t, y coordinates.

—————————————Using the same argument and defining φ̂(t, y) =
φ(t, x+ vt) we get the Lagrangian

S =

∫

(

(∂tφ)
2 − (F (∂x)φ)

2
)

dxdt (6)

=

∫

(

((∂t + v∂y)φ̂(t, y))
2 − (F (∂y)φ̂(t, y))

2
)

dydt (7)
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The conjugate momentum is δS
δ(∂tφ̂(t,y)

which in this case is π̂ = 2((∂t + v∂y)φ̂)

c) What is the norm of the field in both coordinates? Ie, show, as I claimed,
that the norm is the same in both coordinates even if the Hamiltonian diago-
nalization frequency changes in the two coordinates.

The norm is
∫

φ∗(t, x)π(t, x)−π(t, x)∗φ(t, x)dx and
∫

φ̂∗(t, y)π̂(t, y)−π̂(t, y)∗φ̂(t, y)dy
Writing the momentum in terms of derivatives of the field we see

∫

φ̂∗(t, y)π̂(t, y)− π̂(t, y)∗φ̂(t, y)dy = 2

∫

φ∗(t, y + vt)(∂t − v∂y)φ(t, y + vt)− (∂t − v∂y)φ
∗(t, y + vt)φ(t, y +

= 2

∫

φ(t, x)∗∂tφ(t, x)− ∂tφ(t, x)
∗φ

=

∫

φ(t, x)∗π(t, x) = π(t, x)φ

as required
2) Consider a Harmonic oscillator

H =
1

2

(

ω(p2 + x2) + ω̃(p̃2 + x̃2)
)

(11)

With Annihilation operators A, Ã.
a) Show that the normalized n quantum state in each case is

|n〉 =
An

n!
|0〉 > (12)

——————————- (And now two mistakes in one equation. This should

be A†n
√
n!

|0〉 >

***********************
———————————————-

[A,A†] = 1 (13)

(A †n |0〉)†A †n |0〉 = 〈0|AnA†n |0〉 (14)

= 〈0| (An−1[A,A†n] +A†nA) |0〉 (15)

= 〈0| (An−1(
∑

r

A†r[A,A†]A†(n−r−1) + 0) |0〉 (16)

= 〈0| (nAn−1A†(n−1) |0〉 (17)

= 〈0| (n(n− 1)....(1)) |0〉 = n! (18)

Thus to normalise the state we must divide by the square root of this.
*********************************************
Now consider the some other annihilation operators

B = αA+ βÃ† (19)

B̃ = γÃ+ δA† (20)
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b)From the commutation relations that B, B† must satisfy, find the relation
between the coefficients α, β, γ, δ that must be satisfied if B and B̃ are to
be independent annihilation operators. Show that a solution exists if all of
α, β, γ, δ are real and positive.

————————-
We want

[B,Bdagger] = [tildeB, tildeBdagger] = 1 (21)

[B, tildeB] = [B, tildeBdagger] = 0 (22)

from [A,A†] = [Ã, Ã†] = 1 and[A, Ã] = [A, Ã†] = 0 We thus get the 4 equation

[αA+ βÃ†, αA† + βA] = α2 − β2 = 1 (23)

[γÃ+ δA†, γÃ† + δA] = γ2 − δ2 = 1 (24)

[αA+ βÃ†, γÃ+ δA†] = αδ − βγ = 0 (25)

[αA+ βÃ†, γÃ† + δA] = 0 (26)

The first says that α = cosh(φ), β = sin(φ) for some φ. The second says
similarly that γ = cosh(ψ), δ = sin(ψ) for some ψ. Thus the third says that
cosh(φ) sinh(ψ) = cosh(ψ) sin(φ) or tanh(phi) = tanh(ψ), which implies that
φ = ψ.

*******************************************
c) What is the vacuum state of the operators B, B̃. Express them in terms

of the states |n〉 and |ñ〉 of the original A, Ã.
—————————-

B |0BB̃〉 = B̃ |0BB̃〉 (27)

This gives

(cosh(φ)A+ sinh(φ)Ã†) |0BB̃〉 = (cosh(φ)Ã+ sinh(φ)A†) |0BB̃〉 = 0 (28)

Again, we assume that |0BB̃〉 = F (A†, Ã†) |0〉 and that A = ∂A† , Ã = ∂Ã†

to give

cosh(φ)∂A†F (A†, Ã†) + sinh(φ)Ã†F (A†, Ã† = 0 (29)

cosh(φ)∂Ã†F (A
†, Ã†) + sinh(φ)A†F (A†, Ã† = 0 (30)

which gives

F = Ne(− tanh(φ)A†Ã†) (31)

where N is a normalisation factor.
************************************************8
d) What is the reduced density matrix of this state for the first A system.

Show that this density matrix can be expressed as a thermal density matrix
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ρ = Ne
1

2
ω(p2+x2)/T where N is a normalisation factor. (Show that ( 12ω(p

2 +
x2) |n〉 = (n+ 1

2 )ω |n〉. Show that |n〉 is an eigenstate of ρ with eigenvalue λ(n).
What is λ(n)? What is N?

Recall that Maxwell showed that, in thermal equilibrium, if the energy of a
state is E, then the probability of that state is proportional to eE/kBT .

————————————

Ne− tanh(φ)A†Ã†

|0〉 = N
∑

n

1

n!
(− tanh(θ))nA†nÃ†n |0〉 (32)

= N(− tanh(φ))n |n, n〉 (33)

Thus the reduced density matrix is

φR = N2
∑

n

〈n| |n〉 |n〉 | tanh(φ)|2n 〈n| =
∑

n

e2 ln(| tanhφ)| |n〉 〈n| (34)

If we write

2ln(| tanh(φ)) = −ω/(kBT ) (35)

where ω is the frequency of the oscillator, then the density matrix is

ρR = N2
∑

n

(e−nω/(kBT ) |n〉 〈n| (36)

which is just the Maxwell equilibrium state of a quantum harmonic oscillator
of frequency ω and temperature T . Note that Tr(ρR) = 1 which gives

N2
∑

n

e−2nln(| tanh(φ)| =
1

1− e−2ln(| tanh(φ)| (37)

N =
√

1− e2ln(| tanh(φ)| (38)

Note that since |tanh(x)| < 1 the argument to the exponential is always nega-
tive.
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