Physics 501-22
Assignment 5

1)Consider a field ¢ like the field of sounds in a fluid with Lagrangian action

S = [ (@) - (F(0.)0)?) duds M

(There should have been a 3 in front of this! Oh well, I will use it as it
stands)

O*********************************

Where F is some analytic function of the operator 9, (ie, we can define F
by its taylor series expansion).

For example

] o air—l
sinh(9,,) = Z @ = 1)1 (2)
r=1
and
inh a ikx __ 63267“71 ikx 3
sinh(9,)e —Z @ = 1)1 (3)

= Z 7(ik)2T_1 et — jsin(k)et*® (4)

Ie, F(0,)e™*™ = F(ik)e'r™
a)Now carry out a coordinate transformation,y = xz — vt and find the La-
grangian action in the new coordinates ¢, y for any function F.

Assume that one has a solution ¢(¢, z) of the equation. Then the new solution
is (b(ta y+ ’Ut) The 8t (¢(t7 Q]‘)) = 6t¢(t7 Y +Ut) - U6y¢(t> y+ Ut) and 8a: (¢(t7 x)) =
0y(é(t,y + vt)). Thus the equation for in the new coordinates is

O (d(t, x) — F2(0x)¢(t, ) = (8 + v0y) (s + v0y))p(t,y + vt) — F(=8,)F(9y)b(t, y + vt) (5)

(The F(—0,) comes from integration by parts of the operator F'(9, since every
intgration by parts reverses the sign of J,.
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b) What is the momentum conjugate to the field in the ¢, y coordinates.
Using the same argument and defining é(t, y) =
o(t,x + vt) we get the Lagrangian

S = [ (@) - (F(@,)0)?) dadt (6)
= [ (@ +00,)3t.0))* - (P(0,)(t.))) duds @



The conjugate momentum is m which in this case is # = 2((0; + v0y)¢)
¢) What is the norm of the field in both coordinates? Ie, show, as I claimed,
that the norm is the same in both coordinates even if the Hamiltonian diago-
nalization frequency changes in the two coordinates.
The norm s [ ¢* (1, 2)(t, 2)—m(t, 2)"6(t, 2)dz and | & (t, ) (t, y)—7(t,y) bt y)dy
Writing the momentum in terms of derivatives of the field we see

/é*(t, Y (t,y) — 7 (ty) ot y)dy = 2 / ¢"(t,y + vt)(0r — v0y) (L, y + vt) — (O — v0y) ™ (t,y + vt)o(t, y
=2 / ¢(t, 2) 0, (t, x) — (L, 2)"¢
B /¢(t,x)*w(t,x) = m(t, z)¢

as required
2) Consider a Harmonic oscillator

H = - (wp® +2*) + @(p* + %)) (11)

N =

With Annihilation operators A, A.
a) Show that the normalized n quantum state in each case is

In) = —|0) > (12)

(And now two mistakes in one equation. This should

Afn
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(A, AT =1 (13)

(Af™[0)TA 1" [0) = (0] A"A™ |0) (14)

= (0] (A" 1[4, AT"] + AT" ) |0) (15)

= (0] (A" (D AlT[A, ATJAT( =D 4 0) |0) (16)
= (0] (nA"~ 1 AT"=1) |0) (17)

= (0] (n(n —1)....(1)) |0) = n! (18)

Thus to normalise the state we must divide by the square root of this.
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Now consider the some other annihilation operators

B =aA + BAT (19)
B =~A+ AT (20)



b)From the commutation relations that B, B must satisfy, find the relation
between the coefficients «, 3,7, § that must be satisfied if B and B are to
be independent annihilation operators. Show that a solution exists if all of
«, B,7, ¢ are real and positive.

We want

[B, Blagger] = [tildeB, tildeB%agger] = 1 (21)
[B, tildeB] = [B, tildeB%agger] = 0 (22)

from [A, A1] = [A, A1] = 1 and[A, A] = [4, AT] = 0 We thus get the 4 equation

[ozA—l—BAT,aAT + BA] = a?—-p2=1
YA+ 6AT yAT 4 64] =~% -2 =1
[0A+ BAT yA+6AT =ad — By =0
(A + BAT ~AT +54] =0

The first says that o = cosh(¢), S = sin(¢) for some ¢. The second says
similarly that v = cosh(¢), ¢ = sin(¢)) for some . Thus the third says that
cosh(¢) sinh(¢)) = cosh(¥) sin(¢) or tanh(phi) = tanh(t), which implies that
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¢) What is the vacuum state of the operators B, B. Express them in terms
of the states |n) and |n) of the original A, A.

B|0gz) = Bl0gz) (27)
This gives
(cosh(p) A + sinh(¢)AT) |0, 5) = (cosh(¢)A +sinh(¢)AT) [055) =0 (28)

Again, we assume that [055) = F(AT, A)|0) and that A = 041, A =3,
to give

cosh(¢)d 4+ F(AT, AT) + sinh(¢)ATF(AT, AT =0 (29)
cosh(4)d 5, F(AT, AT) + sinh(¢)ATF(AT, AT = 0 (30)

which gives
F Ne(ftanh(zi))A‘LAT) (31)

where N is a normalisation factor.
************************************************8

d) What is the reduced density matrix of this state for the first A system.
Show that this density matrix can be expressed as a thermal density matrix



p = Nez*®+2")/T where N is a normalisation factor. (Show that (w(p® +
2?) [n) = (n+1)w|n). Show that |n) is an eigenstate of p with eigenvalue A(n).
What is A(n)? What is N?

Recall that Maxwell showed that, in thermal equilibrium, if the energy of a
state is E, then the probability of that state is proportional to e®/#5T

- 1 bt
Ne—tanh(¢)ATAT ‘0> - N Z E(_ tanh(e))nATnAT” |0> (32)

= N(—tanh(¢))" [n,n) (33)

Thus the reduced density matrix is

or =N (n|[n)|n) [tanh(¢)|*" (n] = Y e* (12O |n) (n] (34)

n

If we write
2in(| tanh(¢)) = —w/(kT) (35)

where w is the frequency of the oscillator, then the density matrix is
pr=N*Y (e7"/E ) |n) (] (36)

which is just the Maxwell equilibrium state of a quantum harmonic oscillator
of frequency w and temperature T. Note that Tr(pr) = 1 which gives

1
2 —2nlin(| tanh(¢)| _
N2 e = 1 o—2in( anh ()] (37)
N = /1 _ ein( (@] (38)

Note that since |tanh(z)| < 1 the argument to the exponential is always nega-
tive.



