
Physics 501-20
Amplifier model

Consider a linear amplifier. One would like it to act such that Φout = αΦin
and Πout = αΠin. Of course for a quantum system, this would violate the
commutation relation, since

[Φout(t, x),Πout(t, x
′)] = iδ(x− x′) (1)

but since [Φin(t, x),Πin(t, x
′)] = iδ(x−x′), we instead would get [Φout(t, x),Πout(t, x

′)] =
iα2δ(x− x′). We could arrange that Φout = αΦin and Πout =

1
α
Πin, but this is

what is what is called a phase sensitive amplifier– in which one of the phases of
the field (the Φ) is amplified but the conjugate is deamplified.

Going to simple oscillators, we can arrange for two oscillatorsQ1, P1, Q2, P2,
with Annihilation operators such that A1, A2 such that

Ã1 = cosh(r)A1 + sinh(r)A†
2 (2)

Ã2 = cosh(r)A2 + sinh(r)A†
1 (3)

Where the˜refer to the output, while the plain are the input. Then, if we define
a coherent state, for the first input, A1 |ψ〉 = a |ψ〉 while A2 |ψ〉 = 0, then

〈ψ| Ã1 |ψ〉 = cosh(r)a (4)

〈ψ| Ã2 |ψ〉 = sinh(r)a∗ (5)

Thus, the expectation value of the output into the 1st channel is amplified by
cosh(r) > 1 while the output into the second channel may be an amplified ver-
sion of the input or deamplified if sinh(r) > 1 or not. Note that the expectation

value of both the Hermitian operators (Ã1 + Ã
†
1 and i(Ã1 − Ã

†
1 are amplified

by that same factor of cosh(r). If this can be arranged then one has a phase
insensitive amplifier (ie, both the phases of the signal are amplified by the same
amount). How can this be arranged?

Let us consider the following model free-Lagrangian.

Lf =
1

2

[
∫

(

(∂tφ(t, x))
2 − (∂xφ(t, x))

2
)

dx−
∫

(

(∂tψ(t, y))
2 − (∂yψ(t, y))

2
)

dy + (∂tq)
2

]

(6)

The second term has a minus sign, and would result in the possibility of an
infinite negative energy. We will assume that this Lagrangian is a good approx-
imation to the real Lagrangian, as long of the two fields φ and ψ are sufficiently
small. At a certain amplitude or energy, we will assume that non-linearities
ensure that the energy is eventually has a lower bound.

These are free, uncoupled fields and a single free particle modeled by q, Now,
at x = y = −ǫ (where we will take ǫ to zero ultimately) we will couple the fields
to the the free particle. Furthermore, let us assume that there is a dirichlet
mirror at at x = 0 and y = 0 such that ∂xφ(t, 0) = ∂yψ(t, 0) = 0. The coupling
will be such that

LI = (λφ(t,−ǫ) + µψ(t,−ǫ)) ∂tq (7)
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The equations of motion of this system are

−+ λ∂tq(t)δ(x+ ǫ) = 0 (8)

+µ∂tq(t)δ(y + ǫ) = 0 (9)

−∂2t q − ∂t(λφ(t,−ǫ) + µψ(t, y)) = 0 (10)

∂xφ(t, 0) = 0 (11)

∂yψ(t, 0) = 0 (12)

where = ∂2t φ− ∂2xψ and = ∂2t ψ − ∂2yψ.
The retarded solution for φ is

φ(t, x) = φ0(t− x) + φ0(t+ x) +
1

2
λ(q(t− |x+ ǫ|) + q(t+ x− ǫ)) (13)

∂2xq(t− |x+ ǫ|) = ∂x(−∂tq(t− |x+ ǫ|)σ(x+ ǫ)) (14)

= ∂2t q(t− |x− ǫ|)σ2(x+ ǫ)− ∂tq(t− |x+ ǫ|)2δ(x+ ǫ)(15)

where σ(ξ) is +1 if ξ > 0 and is -1 otherwise. And thus

(−∂2t + ∂2x)q(t− |x+ ǫ|) = −∂tq(t)δ(x+ ǫ

The solution for the ψ field is

ψ(t, y) = ψ0(t− y) + ψ0(t+ y)− 1

2
µ∂t(q(t− |y + ǫ|) + q(t+ y − ǫ)) (16)

and the equation for q is

∂2t q(t) + λ∂t(φ0(t+ ǫ) + φ0(t− ǫ) +
1

2
λ(2q(t) + q(t− 2ǫ)) (17)

+ µ∂t(ψ0(t+ ǫ) + ψ0(t− ǫ)− 1

2
µ(2q(t) + q(t− 2ǫ)) = 0 (18)

We now take the limit as ǫ→ 0. We have

φ(t, x) = φ0(t− x) + φ0(t+ x) + λ2(q(t+ x)) (19)

ψ(t, x) = ψ0(t− x) + ψ0(t+ x)− λ2(q(t+ x)) (20)

∂2t q(t) + (λ2 − µ2)∂tq(t) = −2(λ∂tφ0(t) + µ∂tψ0(t)) (21)

(22)

Note that if µ2 > λ2, the system is unstable, q(t) will exponentially run away
(and thus so will the output, the t+ xdependent parts of ψ(t+ x) and φ(t+ x),
until the neglected non-linearities take over.

Going to the Fourier transform space where the input goes as e−iωt, we have

−ω2qω − iω(λ2 − µ2)qω = −iω(λφ0ω + µψ0ω) (23)

(24)
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or

qω =
µφ0ω + λψ0ω

−iω + (λ2 − µ2)
(25)

φωin = φ0ω (26)

φωout = (φ0ω + λ(qω)) (27)

ψωin = ψ0ω (28)

ψωout = ψ0ω − µqω (29)

(30)

Given an incoming wavepacket in the φ channel, φ0(t−x) =
∫

ω>0
αωe

iω(t−x)dω

with αω = 0 for ω < 0, in the limit as t → −∞, so that
∫

φ0(t + x) ≈ 0dω for
all x < 0.

Given the full Lagrangian, the conjugate momentum for φ will be

πφ(t, x) = ∂tφ(t, x)− λ∂tq(t)δ(x) (31)

πψ(t, x) = −∂tψ(t, x)− µ∂tq(t)δ(x) (32)

p(t, x) = ∂tq − λφ(t, 0)− µψ(t, 0) (33)

In the limit as t→ −∞, the norm of the above mode will be

< φ, φ >=
i

2
(φ0(t− x)∗∂tφ0(t− x)− ∂tφ0(t− x)∗φ0(t− x)) dx =

∫

ω|αω|2dω > 0 (34)

Similary for ψ0(t) =
∫

βωe
iωtdω we get a similar expression, except, since

πψ = −∂tψ, the norm switches sign. Thus the ω > 0 modes are negative norm
for ψ channel, and will thus be associated with creation operators in this ψ
input channel.

The modes in which q starts off non-zero and φ and ψ are zero will decay
exponentially for q, and will produce a single outgoing mode in the φ and ψ

channels. If the intial state is taken to occur for t → −∞, this mode will
exponentially convert itself into outgoing modes which go off to x → ∞. I will
neglect this isolated mode.

As t → ∞, the incoming wavepacket will convert itself to outgoing modes.
For the outgoing modes

φ(t, x) =

∫
(

αω + λ
λαω − µβω

−iω + (λ2 − µ2)

)

e−iω(t+x)dω (35)

ψ(t, x) =

∫
(

βω − µ
λα− µβω

−iω + (λ2 − µ2)

)

e−iω(t+x)dω (36)

To quantize the system, again the quantum operators Φ,Ψ, Q obey exactly
the same equation of motion. Writing in terms of the ingoing modes as t→ ∞,
we have

Φin =

∫

ω>0

Aω
e−iω(t−x)√

2πω
dω +HC (37)

Ψin =

∫

ω>0

B†
ω

e−iω(t−x)√
2πω

dω +HC (38)
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While in the limit as t→ ∞, we have the outgoing operators

Φout =

∫

ω>0

Ãω
e−iω(t+x)√

2πω
dω +HC (39)

Ψout =

∫

ω>0

B̃†
ω

e−iω(t+x)√
2πω

dω +HC (40)

From the solution to the equations, we find

Ãω = Aω − λ
2λAω + 2µB†

ω

−iω + (λ2 − µ2)
(41)

= Aω
−iω − λ2 − µ2

−iω + λ2 − µ2
+B† 2λµ

−iω + λ2 − µ2
(42)

B̃† = B† + µ
2λAω + 2µB†

ω

−iω + (λ2 − µ2)
(43)

=
−iω + λ2 + µ2

−iω + λ2 − µ2
B†
ω +

2λµ

−iω + λ2 − µ2
Aω (44)

Ie, this system produces a squeezed two mode state, the two modes being in the
two φ and ψ channels.

If the initial state is a vacuum state, the outgoing state is not.

〈0| Ã†
ωÃω′ |0〉 = 〈0|BωB†

ω′ |0〉
∣

∣

∣

∣

λµ

−iω + λ2 − µ2

∣

∣

∣

∣

2

= δ(ω − ω′)

∣

∣

∣

∣

λµ

−iω + λ2 − µ2

∣

∣

∣

∣

2

(45)

and similarly for 〈0| B̃†B̃ |0〉. There is a non-zero expecation value of the number
of particles in the final state, even if the incoming state was the vacuum.

In this case the amplification factor from Φin to Φout

cosh(rω) =

∣

∣

∣

∣

−iω − λ2 − µ2

−iω + λ2 − µ2

∣

∣

∣

∣

(46)

=

√

ω2 + (λ2 + µ2)2

ω2 + (λ2 − µ2)
(47)

Plotting the 10 log10(cosh(rω)
2) (the power amplifiction) vs log(ω), we find

that for ω < λ2 − µ2, the amplification is relatively constant. For λ2 − µ2 <

ω < λ2 + µ2 the amplification drops at 6dB/octave, until at ω > λ2 + µ2 the
amplification is essentially unity with a log of 0.

If, on the other hand the incoming signal was in the ψ channel, but the
output is in the φ, the power amplification is |sinh(r)|2 which looks similar the
φ channel amplification except that it keeps dropping forever by 6dB/octave.

And this is a typical op-amp amplifier curve as taken from http://www.learningaboutelectronics.com/Articles/Op-
amp-specifications-full-power-bandwidth
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Figure 1: Amplifier with λ2 − µ2 = 1 and λ2 + µ2 = 10000
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Figure 2: Typical Op-Amp gain vs frequency chart. Note that in this case
it would be the equivalent sending the signal into channel Ψ and reading the
output from channel Φ– ie the amplification is sinh(rω)
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