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Abstract

We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic

evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that

interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final

Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system

evolves to the desired final ground state, the evolution time must be big enough. The time required

depends on the minimum energy difference between the two lowest states of the interpolating

Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric

cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show

that, in these cases, our algorithm runs in polynomial time.

1 Introduction

We present a quantum algorithm for the satisfiability problem (and other combinatorial search prob-

lems) that works on the principle of quantum adiabatic evolution.

An n-bit instance of satisfiability is a formula

C1 ∧ C2 ∧ · · · ∧ CM (1.1)

where each clause Ca is True or False depending on the values of some subset of the bits. For a single

clause, involving only a few bits, it is easy to imagine constructing a quantum device that evolves

to a state that encodes the satisfying assignments of the clause. The real difficulty, of course, lies in

constructing a device that produces an assignment that satisfies all M clauses.

Our algorithm is specified by an initial state in an n-qubit Hilbert space and a time-dependent

Hamiltonian H(t) that governs the state’s evolution according to the Schrödinger equation. The

Hamiltonian takes the form

H(t) = HC1
(t) +HC2

(t) + · · · +HCM
(t) (1.2)
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2 Quantum Computation by Adiabatic Evolution

where eachHCa
depends only on clause Ca and acts only on the bits in Ca.H(t) is defined for t between

0 and T and is slowly varying. The initial state, which is always the same and easy to construct, is

the ground state of H(0). For each a, the ground state of HCa
(T ) encodes the satisfying assignments

of clause Ca. The ground state of H(T ) encodes the satisfying assignments of the intersection of all

the clauses. According to the adiabatic theorem, if the evolution time T is big enough, the state of the

system at time T will be very close to the ground state of H(T ), thus producing the desired solution.

For this algorithm to be considered successful we require that T grow only polynomially in n, the

number of bits. In this paper we analyze three examples where T grows only polynomially in n. We

are unable to estimate the required running time T in general.

The quantum adiabatic evolution that we are using should not be confused with cooling. For

example, simulated annealing is a classical algorithm that attempts to find the lowest energy configu-

ration of what we have called H(T ) by generating the stochastic distribution proportional to e−βH(T ),

where β is the inverse temperature, and gradually lowering the temperature to zero. In contrast, quan-

tum adiabatic evolution forces the state of the system to remain in the ground state of the slowly

varying H(t).

In Section 2 we present the building blocks of our algorithm in detail. This includes some discus-

sion of the adiabatic theorem and level crossings. In Section 3 we illustrate the method on a small

example that has three clauses, each acting on 2 bits. Each 2-bit clause has more than one satisfying

assignment but adiabatic evolution using H(t) of the form (1.2) produces the unique common sat-

isfying assignment. In Section 4 we look at examples that grow with the number of bits in order to

study the dependence of the required running time on the number of bits. We give three examples

of 2-SAT problems, each of which has a regular structure, which allows us to analyze the quantum

evolution. In these three cases the required evolution time T is only polynomially big in the number of

bits. We also look at a version of the Grover problem that can be viewed as a relativized satisfiability

problem. In this case our algorithm requires exponential time to produce a solution. This had to be

so, as explained in Section 4.2.

In Section 5 we show that our algorithm can be recast within the conventional paradigm of quantum

computing, involving sequences of few-bit unitary operators.

2 Adiabatic Evolution for Solving Satisfiability

In this section we present a quantum algorithm for solving satisfiability problems.

2.1 The Adiabatic Theorem

A quantum system evolves according to the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (2.1)

and the adiabatic theorem [1] tells us how to follow this evolution in the case that H(t) is slowly

varying. Consider a smooth one-parameter family of Hamiltonians H̃(s), 0 ≤ s ≤ 1, and take

H(t) = H̃(t/T ) (2.2)

so that T controls the rate at which H(t) varies. Define the instantaneous eigenstates and eigenvalues

of H̃(s) by

H(s) |ℓ; s〉 = Eℓ(s) |ℓ; s〉 (2.3)



E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser 3

with

E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s) (2.4)

where N is the dimension of the Hilbert space. Suppose |ψ(0)〉 is the ground state of H̃(0), that is,

|ψ(0)〉 = |ℓ = 0; s = 0〉 . (2.5)

According to the adiabatic theorem, if the gap between the two lowest levels, E1(s)−E0(s), is strictly

greater than zero for all 0 ≤ s ≤ 1, then

lim
T→∞

∣∣〈ℓ = 0; s = 1 | ψ(T )〉
∣∣ = 1 . (2.6)

This means that the existence of a nonzero gap guarantees that |ψ(t)〉 obeying (2.1) remains very

close to the instantaneous ground state of H(t) of the form (2.2) for all t from 0 to T if T is big

enough. Let us define the minimum gap by

gmin = min
0≤s≤1

(
E1(s) − E0(s)

)
. (2.7)

A closer look at the adiabatic theorem tells us that taking

T ≫ E
g2
min

(2.8)

where

E = max
0≤s≤1

∣∣∣
〈
ℓ = 1; s

∣∣∣
dH̃

ds

∣∣∣ℓ = 0; s
〉∣∣∣ (2.9)

can make
∣∣〈ℓ = 0; s = 1 | ψ(T )〉

∣∣ (2.10)

arbitrarily close to 1. For all of the problems that we study E is of order a typical eigenvalue of H

and is not too big, so the size of T is governed by g−2
min.

2.2 The Satisfiability Problem

Many computationally interesting problems can be recast into an equivalent problem of finding a

variable assignment that minimizes an “energy” function. As a specific example, consider 3-SAT. An

n-bit instance of 3-SAT is a Boolean formula, (1.1), that is specified by a collection of Boolean clauses,

each of which involves (at most) 3 of the n bits. Each bit zi can take the value 0 or 1 and the i label

runs from 1 to n. Clause C is associated with the 3 bits labeled iC , jC , and kC . For each clause C we

define an energy function

hC(ziC
, zjC

, zkC
) =

{
0 , if (ziC

, zjC
, zkC

) satisfies clause C

1 , if (ziC
, zjC

, zkC
) violates clause C.

(2.11)

We then define the total energy h as the sum of the individual hC ’s,

h =
∑

C

hC . (2.12)

Clearly h ≥ 0 and h(z1, z2, . . . , zn) = 0 if and only if (z1, z2, . . . , zn) satisfies all of the clauses. Thus

finding the minimum energy configuration of h tells us if the formula has a satisfying assignment.

We will not distinguish between conventional clauses, which compute the OR function of each

constituent variable or negated variable, and generalized clauses, which are permitted to compute

an arbitrary Boolean function of the constituent variables. In some of our examples it will be more

convenient to consider generalized clauses.
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2.3 The Problem Hamiltonian HP

If we go from classical to quantum computation we replace the bit zi by a spin- 1
2 qubit labeled by

|zi〉 where zi = 0, 1. The states |zi〉 are eigenstates of the z component of the i-th spin,

|0〉 =
( 1

0

)
and |1〉 =

( 0

1

)
(2.13)

so

1
2 (1 − σ(i)

z ) |zi〉 = zi |zi〉 where σ(i)
z =

( 1 0

0 −1

)
. (2.14)

The Hilbert space is spanned by the N = 2n basis vectors |z1〉 |z2〉 · · · |zn〉. Clause C is now associated

with the operator HP,C ,

HP,C(|z1〉 |z2〉 · · · |zn〉) = hC(ziC
, zjC

, zkC
) |z1〉 |z2〉 · · · |zn〉 . (2.15)

The Hamiltonian associated with all of the clauses, which we call HP,

HP =
∑

C

HP,C (2.16)

is the sum of Hamiltonians each of which acts on a fixed number of bits. By construction, HP is

nonnegative, that is, 〈ψ|HP |ψ〉 ≥ 0 for all |ψ〉 and HP |ψ〉 = 0 if and only if |ψ〉 is a superposition

of states of the form |z1〉 |z2〉 · · · |zn〉 where z1, z2, . . . , zn satisfy all of the clauses. In this context,

solving a 3-SAT problem is equivalent to finding the ground state of a Hamiltonian. Clearly many

other computationally interesting problems can be recast in this form.

2.4 The Initial Hamiltonian HB

For a given problem, specifying HP is straightforward but finding its ground state may be difficult.

We now consider an n-bit Hamiltonian HB that is also straightforward to construct but whose ground

state is simple to find. Let H
(i)
B be the 1-bit Hamiltonian acting on the i-th bit

H
(i)
B = 1

2 (1 − σ(i)
x ) with σ(i)

x =
( 0 1

1 0

)
(2.17)

so

H
(i)
B |xi = x〉 = x |xi = x〉

where

|xi = 0〉 =
1√
2

( 1

1

)
and |xi = 1〉 =

1√
2

( 1

−1

)
. (2.18)

Continuing to take 3-SAT as our working example, clause C is associated with the bits iC , jC , and

kC . Now define

HB,C = H
(iC)
B +H

(jC)
B +H

(kC)
B (2.19)

and

HB =
∑

C

HB,C . (2.20)
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The ground state of HB is |x1 = 0〉 |x2 = 0〉 · · · |xn = 0〉. This state, written in the z basis, is a super-

position of all 2n basis vectors |z1〉 |z2〉 · · · |zn〉,

|x1 = 0〉 |x2 = 0〉 · · · |xn = 0〉 =
1

2n/2

∑

z1

∑

z2

· · ·
∑

zn

|z1〉 |z2〉 · · · |zn〉 . (2.21)

Note that we can also write

HB =

n∑

i=1

diH
(i)
B (2.22)

where di is the number of clauses in which bit i appears in the instance of 3-SAT being considered.

The key feature of HB is that its ground state is easy to construct. The choice we made here will

lead to an H(t) that is of the form (1.2), that is, a sum of Hamiltonians associated with each clause.

2.5 Adiabatic Evolution

We will now use adiabatic evolution to go from the known ground state of HB to the unknown ground

state of HP. Assume for now that the ground state of HP is unique. Consider

H(t) = (1 − t/T )HB + (t/T )HP (2.23)

so from (2.2),

H̃(s) = (1 − s)HB + sHP . (2.24)

Prepare the system so that it begins at t = 0 in the ground state of H(0) = HB. According to the

adiabatic theorem, if gmin is not zero and the system evolves according to (2.1), then for T big enough

|ψ(T )〉 will be very close to the ground state of HP, that is, the solution to the computational problem.

Using the explicit form of (2.16) and (2.20) we see that H(t) and H̃(s) are sums of individual

terms associated with each clause. For each clause C let

HC(t) = (1 − t/T )HB,C + (t/T )HP,C (2.25)

and accordingly

H̃C(s) = (1 − s)HB,C + sHP,C . (2.26)

Then we have

H(t) =
∑

C

HC(t) (2.27)

and

H̃(s) =
∑

C

H̃C(s) . (2.28)

This gives the explicit form of H(t) described in the Introduction as a sum of Hamiltonians associated

with individual clauses.
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2.6 The Size of the Minimum Gap and the

Required Evolution Time

Typically gmin is not zero. To see this, note from (2.7) that vanishing gmin is equivalent to there being

some value of s for which E1(s) = E0(s). Consider a general 2× 2 Hamiltonian whose coefficients are

functions of s
(

a(s) c(s) + id(s)

c(s) − id(s) b(s)

)
(2.29)

where a, b, c, and d are all real. The two eigenvalues of this matrix are equal for some s if and

only if a(s) = b(s), c(s) = 0, and d(s) = 0. The curve
(
a(s), b(s), c(s), d(s)

)
in R

4 will typically not

intersect the line (y, y, 0, 0) unless the Hamiltonian has special symmetry properties. For example,

suppose the Hamiltonian (2.29) commutes with some operator, say for concreteness σx. This implies

that a(s) = b(s) and d(s) = 0. Now for the two eigenvalues to be equal at some s we only require c to

vanish at some s. As s varies from 0 to 1 it would not be surprising to find c(s) cross zero so we see

that the existence of a symmetry, that is, an operator which commutes with the Hamiltonian makes

level crossing more commonplace. These arguments can be generalized to N × N Hamiltonians and

we conclude that in the absence of symmetry, levels typically do not cross. We will expand on this

point after we do some examples.

In order for our method to be conceivably useful, it is not enough for gmin to be nonzero. We must

be sure that gmin is not so small that the evolution time T is impractically large; see (2.8). For an

n-bit problem we would say that adiabatic evolution can be used to solve the problem if T is less than

np for some fixed p whereas the method does not work if T is of order an for some a > 1. Returning

to (2.8) we see that the required running time T also depends on E given in (2.9). Using (2.24) we

have dH̃/ds = HP − HB. Therefore E can be no larger than the maximum eigenvalue of HP −HB.

From (2.16) we see that the spectrum of HP is contained in {0, 1, 2, . . . ,M} where M is the number of

terms in (2.16), that is, the number of clauses in the problem. From (2.22) we see that the spectrum

of HB is contained in {0, 1, 2, . . . , d} where d =
∑
di. For 3-SAT, d is no bigger than 3M . We are

interested in problems for which the number of clauses grows only as a polynomial in n, the number

of bits. Thus E grows at most like a polynomial in n and the distinction between polynomial and

exponential running time depends entirely on gmin.

We make no claims about the size of gmin for any problems other than the examples given in

Section 4. We will give three examples where gmin is of order 1/np so the evolution time T is polynomial

in n. Each of these problems has a regular structure that made calculating gmin possible. However,

the regularity of these problems also makes them classically computationally simple. The question

of whether there are computationally difficult problems that could be solved by quantum adiabatic

evolution we must leave to future investigation.

2.7 The Quantum Algorithm

We have presented a general quantum algorithm for solving SAT problems. It consists of:

1. An easily constructible initial state (2.21), which is the ground state of HB in (2.20).

2. A time-dependent Hamiltonian, H(t), given by (2.23) that is easily constructible from the given

instance of the problem; see (2.16) and (2.20).

3. An evolution time T that also appears in (2.23).

4. Schrödinger evolution according to (2.1) for time T .
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5. The final state |ψ(T )〉 that for T big enough will be (very nearly) the ground state of HP.

6. A measurement of z1, z2, . . . , zn in the state |ψ(T )〉. The result of this measurement will be

a satisfying assignment of formula (1.1), if it has one (or more). If the formula (1.1) has no

satisfying assignment, the result will still minimize the number of violated clauses.

Again, the crucial question about this quantum algorithm is how big must T be in order to solve

an interesting problem. It is not clear what the relationship is, if any, between the required size of T

and the classical complexity of the underlying problem. The best we have been able to do is explore

examples, which is the main subject of the rest of this paper.

3 One-, Two-, and Three-Qubit Examples

Here we give some one-, two-, and three-qubit examples that illustrate some of the ideas of the

introduction. The two-qubit examples have clauses with more than one satisfying assignment and

serve as building blocks for the three-qubit example and for the more complicated examples of the

next section.

3.1 One Qubit

Consider a one-bit problem where the single clause is satisfied if and only if z1 = 1. We then take

HP = 1
2 + 1

2σ
(1)
z (3.1)

which has |z1 = 1〉 as its ground state. For the beginning Hamiltonian we take (2.22) with n = 1 and

d1 = 1,

HB = H
(1)
B = 1

2 − 1
2σ

(1)
x . (3.2)

The smooth interpolating Hamiltonian H̃(s) given by (2.24) has eigenvalues 1
2 (1 ±

√
1 − 2s+ 2s2),

which are plotted in Fig. 1. We see that gmin is not small and we could adiabatically evolve from

|x1 = 0〉 to |z1 = 1〉 with a modest value of T .

At this point we can illustrate why we picked the beginning Hamiltonian, HB, to be diagonal in

a basis that is not the basis that diagonalizes the final problem Hamiltonian HP. Suppose we replace

HB by H ′
B

H ′
B = 1

2 − 1
2σ

(1)
z (3.3)

keeping HP as in (3.1). Now H̃(s) is diagonal in the z-basis for all values of s. The two eigenvalues

are s and (1 − s), which are plotted in Fig. 2. The levels cross so gmin is zero. In fact there is a

symmetry, H̃(s) commutes with σz for all s, so the appearance of the level cross is not surprising.

Adiabatically evolving, starting at |z1 = 0〉, we would end up at |z1 = 0〉, which is not the ground

state of HP. However, if we add to HB any small term that is not diagonal in the z basis, we break

the symmetry, and H̃(s) will have a nonzero gap for all s. For example, the Hamiltonian

[
s ε(1 − s)

ε(1 − s) 1 − s

]
(3.4)

has gmin = ε for ε small and the eigenvalues are plotted in Fig. 3 for a small value of ε. This “level

repulsion” is typically seen in more complicated systems whereas level crossing is not.
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Figure 1: The two eigenvalues of H̃(s) for a one-qubit example.

3.2 Two Qubits

A simple two-qubit example has a single two-bit clause that allows the bit values 01 and 10 but not 00

and 11. We call this clause “2-bit disagree.” We takeHB of the form (2.22) with n = 2 and d1 = d2 = 1,

and we take HP of the form (2.16) with the single 2-bit disagree clause. The instantaneous eigenvalues

of H̃(s) of the form (2.24) are shown in Fig. 4. There are two ground states of HP, |z1 = 0〉 |z2 = 1〉
and |z1 = 1〉 |z2 = 0〉. The starting state |ψ(0)〉, which is the ground state of HB, is (2.21) with n = 2.

There is a bit-exchange operation |z1〉 |z2〉 → |z2〉 |z1〉 that commutes with H̃(s). Since the starting

state |ψ(0)〉 is invariant under the bit-exchange operation, the state corresponding to the s = 1 end

of the lowest level in Fig. 4 is the symmetric state 1√
2

(
|z1 = 0〉 |z2 = 1〉 + |z1 = 1〉 |z2 = 0〉

)
. The next

level, E1(s), begins at the antisymmetric state 1√
2

(
|x1 = 0〉 |x2 = 1〉 − |x1 = 1〉 |x2 = 0〉

)
and ends at

the antisymmetric state 1√
2

(
|z1 = 0〉 |z2 = 1〉 − |z1 = 1〉 |z2 = 0〉

)
. Because H̃(s) commutes with the

bit-exchange operation there can be no transitions from the symmetric to the antisymmetric states.

Therefore the E1(s) curve in Fig. 4 is irrelevant to the adiabatic evolution of the ground state and the

relevant gap is E2(s) − E0(s).

Closely related to 2-bit disagree is the “2-bit agree clause,” which has 00 and 11 as satisfying

assignments. We can obtain HP for this problem by taking HP for 2-bit disagree and acting with

the operator that takes |z1〉 |z2〉 → |z1〉 |z2〉. Note that HB = H
(1)
B + H

(2)
B is invariant under this

transformation as is the starting state |ψ(0)〉 given in (2.21). This implies that the levels of H̃(s)

corresponding to 2-bit agree are the same as those for 2-bit disagree and that beginning with the

ground state of HB, adiabatic evolution brings you to 1√
2

(
|z1 = 0〉 |z2 = 0〉 + |z1 = 1〉 |z2 = 1〉

)
.

Another two-bit example that we will use later is the clause “imply”. Here the satisfying assign-

ments are 00, 01, and 11. The relevant level diagram is shown in Fig. 5.
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Figure 2: The two eigenvalues of H̃(s) for a one-qubit example where HB and HP are diagonal in the

same basis. The levels cross so gmin = 0.

3.3 Three Qubits

Next we present a three-bit example that is built up from two-bit clauses so we have an instance of

2-SAT with three bits. We take the 2-bit imply clause acting on bits 1 and 2, the 2-bit disagree clause

acting on bits 1 and 3, and the 2-bit agree clause acting on bits 2 and 3. Although each two-bit clause

has more than one satisfying assignment, the full problem has the unique satisfying assignment 011.

The corresponding quantum Hamiltonian, H̃(s) = (1 − s)HB + sHP, we write as the sum of

Hamiltonians each of which acts on two bits,

HP = H12
imply +H13

disagree +H23
agree

HB = (H
(1)
B +H

(2)
B ) + (H

(1)
B +H

(3)
B ) + (H

(2)
B +H

(3)
B ) . (3.5)

The eigenvalues of H̃(s) are shown in Fig. 6. We see that gmin is not zero. Starting in the ground state

of HB, and evolving according to (2.1) with H(t) = H̃(t/T ) the system will end up in the ground state

of HP for T ≫ 1/g2
min. This example illustrates how our algorithm evolves to the unique satisfying

assignment of several overlapping clauses even when each separate clause has more than one satisfying

assignment.

The alert reader may have noticed that two of the levels in Fig. 6 cross. This can be understood

in terms of a symmetry. The Hamiltonian HP of (3.5) is invariant under the unitary transformation

V
(
|z1〉 |z2〉 |z3〉

)
= |z2〉 |z1〉 |z3〉, as is HB. Now the three states with energy equal to 4 at s = 0 are

|x1 = 1〉 |x2 = 1〉 |x3 = 0〉, |x1 = 0〉 |x2 = 1〉 |x3 = 1〉, and |x1 = 1〉 |x2 = 0〉 |x3 = 1〉. The transforma-

tion |z〉 → |z〉 in the |x〉 basis is |x〉 → (−1)x |x〉, so the states

|x1 = 1〉 |x2 = 1〉 |x3 = 0〉 and |x1 = 0〉 |x2 = 1〉 |x3 = 1〉 − |x1 = 1〉 |x2 = 0〉 |x3 = 1〉

are invariant under V , whereas

|x1 = 0〉 |x2 = 1〉 |x3 = 1〉 + |x1 = 1〉 |x2 = 0〉 |x3 = 1〉
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Figure 3: A small perturbation is added to the Hamiltonian associated with Fig. 2 and we see that

the levels no longer cross.

goes to minus itself. We call these two different transformation properties “invariant” and “odd”.

Thus at s = 0 there are two invariant states and one odd state with energy 4. We see from Fig. 6

that one combination of these states ends up at energy 2 when s = 1. The energy-2 state at s = 1 is

|z1 = 0〉 |z2 = 1〉 |z3 = 0〉, which is invariant so the level moving across from energy 4 to energy 2 is

invariant. This means that one of the two levels that start at energy 4 and end at energy 1 is invariant

and the other is odd. Since the Hilbert space can be decomposed into a direct sum of the invariant

and odd subspaces and accordingly H(t) is block diagonal, the invariant and odd states are decoupled,

and their crossing is not an unlikely occurrence.

Since, in this simple 3-bit example, we do see levels cross you may wonder if we should expect

to sometimes see the two lowest levels cross in more complicated examples. We now argue that we

do not expect this to happen and even if it does occur it will not effect the evolution of the ground

state. First note that the transformation which is a symmetry of (3.5) is not a symmetry of the

individual terms in the sum. Thus it is unlikely that such symmetries will typically be present in more

complicated n-bit examples. However, it is inevitable that certain instances of problems will give

rise to Hamiltonians that are invariant under some transformation. Imagine that the transformation

consists of bit interchange and negation (in the z basis) as in the example just discussed. Then

the starting state |x = 0〉 given by (2.21) is invariant. Assume that HP has a unique ground state

|z1 = w1〉 |z2 = w2〉 · · · |zn = wn〉. Since HP is invariant this state must transform into itself, up to a

phase. However, from the explicit form of the ground state we see that it transforms without a phase,

that is, it is invariant. Thus, following the evolution of the ground state we can restrict our attention

to invariant states. The gap that matters is the smallest energy difference between the two lowest

invariant states.
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Figure 4: The four eigenvalues of H̃(s) associated with “2-bit disagree”. The same levels are associated

with “2-bit agree”.

4 Examples with an Arbitrary Number of Bits

Here we discuss four examples of n-bit instances of satisfiability. In three of the examples the problems

are classically computationally simple to solve. These problems also have structure that we exploit

to calculate gmin in the corresponding quantum version. In each case gmin goes like 1/np, so these

problems can be solved in polynomial time by adiabatic quantum evolution. The other example is the

“Grover problem” [2], which has a single (generalized) n-bit clause with a unique satisfying assignment.

If we assume that we treat the clause as an oracle, which may be queried but not analyzed, it takes 2n

classical queries to find the satisfying assignment. Our quantum version has gmin of order 2−n/2, so the

time required for quantum adiabatic evolution scales like 2n, which means that there is no quantum

speedup. Nonetheless, it is instructive to see how it is possible to evaluate gmin for the Grover problem.

4.1 2-SAT on a Ring: Agree and Disagree

Consider an n-bit problem with n clauses, each of which acts only on adjacent bits, that is, clause Cj

acts on bits j and j + 1 where j runs from 1 to n and bit n+ 1 is identified with bit 1. Furthermore

we restrict each clause to be either “agree”, which means that 00 and 11 are satisfying assignments or

“disagree”, which means that 01 and 10 are satisfying assignments. Suppose there are an even number

of disagree clauses so that a satisfying assignment on the ring exists. Clearly given the list of clauses

it is trivial to construct the satisfying assignment. Also, if w1, w2, . . . , wn is a satisfying assignment,

so is w1, w2, . . . , wn, so there are always exactly two satisfying assignments.

The quantum version of the problem has

HP = H12
C1

+H23
C2

+ · · · +Hnn+1
Cn

(4.1)

where each Cj is either agree or disagree. The ground states of HP are |w1〉 |w2〉 · · · |wn〉 and |w1〉×
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Figure 5: The four eigenvalues of H̃(s) associated with the 2-bit imply clause.

|w2〉 · · · |wn〉 all in the z basis. Define the unitary transformation

|z1〉 |z2〉 · · · |zn〉 → |z′1〉 |z′2〉 · · · |z′n〉
{

z′j = zj , if wj = 1

z′j = zj , if wj = 0 .
(4.2)

Under this transformation HP becomes

HP = H12
agree +H23

agree + · · · +Hnn+1
agree (4.3)

and the symmetric ground state of HP is

|w〉 =
1√
2

(
|z1 = 0〉 |z2 = 0〉 · · · |zn = 0〉 + |z1 = 1〉 |z2 = 1〉 · · · |zn = 1〉

)
. (4.4)

We take HB to be (2.22) with n bits and each di = 2. HB is invariant under the transformation just

given. This implies that the spectrum of H̃(s) = (1−s)HB +sHP, with HP given by (4.1), is identical

to the spectrum of H̃(s) with HP given by (4.3). Thus when we find gmin using (4.3) we will have

found gmin for all of the n-bit agree-disagree problems initially described.

We can write H̃(s) using (4.3) for HP as

H̃(s) = (1 − s)

n∑

j=1

(1 − σ(j)
x ) + s

n∑

j=1

1
2 (1 − σ(j)

z σ(j+1)
z ) . (4.5)

We denote the s = 0 ground state given by (2.21) as |x = 0〉. Define the operator G that negates the

value of each bit in the z basis, that is, G |z1〉 |z2〉 · · · |zn〉 = |z1〉 |z2〉 · · · |zn〉. This can be written as

G =

n∏

j=1

σ(j)
x . (4.6)
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Figure 6: The eight levels of H̃(s) for the 3-bit problem with HP and HB given by (3.5).

Since G |x = 0〉 = |x = 0〉 and
[
G, H̃(s)

]
= 0, we can restrict our attention to states that are invariant

under G such as (4.4).

We now write (4.5) in the invariant sector as a sum of n/2 commuting 2× 2 Hamiltonians that we

can diagonalize. First we make a standard transformation to fermion operators. To this end we define

for j = 1, . . . , n,

bj = σ(1)
x σ(2)

x · · ·σ(j−1)
x σ

(j)
− 1(j+1) · · · 1(n)

b†j = σ(1)
x σ(2)

x · · ·σ(j−1)
x σ

(j)
+ 1(j+1) · · · 1(n) (4.7)

where

σ− = 1
2

(
1 −1

1 −1

)
and σ+ = 1

2

(
1 1

−1 −1

)
.

It is straightforward to verify that

{bj, bk} = 0

{bj, b†k} = δjk (4.8)

where {A,B} = AB +BA. Furthermore

b†jbj = 1
2 (1 − σ(j)

x ) (4.9)

for j = 1, . . . , n and

(b†j − bj)(b
†
j+1 + bj+1) = σ(j)

z σ(j+1)
z (4.10)

for j = 1, . . . , n−1. We need a bit more care to make sense of (4.10) for j = n. An explicit calculation

shows that

(b†n − bn)(b†1 + b1) = −Gσ(n)
z σ(1)

z (4.11)
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where G is given by (4.6). Since we will restrict ourselves to the G = 1 sector, (4.10) and (4.11) are

only consistent if bn+1 = −b1, so we take this as the definition of bn+1.

We can now reexpress H̃(s) of (4.5) in terms of the b’s:

H̃(s) =
n∑

j=1

{
2(1 − s)b†jbj +

s

2

(
1 − (b†j − bj)(b

†
j+1 + bj+1)

)}
. (4.12)

Because this is invariant under the translation, bj → bj+1, and is quadratic in the bj and b†j, a

transformation to fermion operators associated with waves running round the ring will achieve the

desired reduction of H̃(s). Let

βp =
1√
n

n∑

j=1

eiπpj/nbj for p = ±1,±3, . . . ,±(n− 1) (4.13)

which is equivalent to

bj =
1√
n

∑

p=±1,±3,...,±(n−1)

e−iπpj/nβp (4.14)

and is consistent with bn+1 = −b1. (We assume for simplicity that n is even.) Furthermore

{
βp, βq

}
= 0

and

{
βp, β

†
q

}
= δpq (4.15)

which follows from (4.8). Substituting (4.14) into (4.12) gives

H̃(s) =
∑

p=1,3,...,(n−1)

Ap(s) (4.16)

where

Ap(s) = 2(1 − s)
[
β†

pβp + β†
−pβ−p

]

+ s
{
1 − cos

πp

n

[
β†

pβp − β−pβ
†
−p

]
+ i sin

πp

n

[
β†
−pβ

†
p − βpβ−p

]}
. (4.17)

The Ap’s commute for different values of p so we can diagonalize each Ap separately.

For each p > 0 let |Ωp〉 be the state annihilated by both βp and β−p, that is, βp |Ωp〉 = β−p |Ωp〉 = 0.

When s = 0, |Ωp〉 is the ground state of Ap. Now Ap(s) only connects |Ωp〉 to |Σp〉 = β†
−pβ

†
p |Ωp〉. In

the |Ωp〉, |Σp〉 basis Ap(s) is

Ap(s) =

[
s+ s cosπp/n is(sinπp/n)

−is(sinπp/n) 4 − 3s− s cosπp/n

]
. (4.18)

For each p the two eigenvalues of Ap(s) are

E±
p (s) = 2 − s±

{
(2 − 3s)2 + 4s(1 − s)(1 − cosπp/n)

} 1

2 . (4.19)
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The ground state energy of (4.16) is
∑
p
E−

p (s). The next highest energy level is E+
1 (s) +

∑
p=3...

E−
p (s).

The minimum gap occurs very close to s = 2
3 and is

gmin ≈ E+
1 (2

3 ) − E−
1 (2

3 ) ≈ 4π

3n
(4.20)

for n large.

Referring back to (2.8) we see that the required evolution time T must be much greater than

E/g2
min where for this problem E scales like n so T ≫ cn3 where c is a constant. We have shown that

for any set of agree and disagree clauses on an n-bit ring, quantum adiabatic evolution will find the

satisfying assignment in a time which grows as a fixed power of n.

4.2 The Grover Problem

Here we consider the Grover problem [2], which we recast for the present context. We have a sin-

gle (generalized) clause, hG, which depends on all n bits with a unique (but unknown) satisfying

assignment w = w1, w2, . . . , wn. Corresponding to hG is a problem Hamiltonian

HP |z〉 =

{
|z〉 , z 6= w

0 , z = w

= 1 − |z = w〉 〈z = w| (4.21)

where we use the shorthand |z〉 = |z1〉 |z2〉 . . . , |zn〉. We imagine that we can construct H(t) = H̃(t/T )

of the form (2.23) with HB given by (2.22) with di = 1 for all i from 1 to n. Since we are evolving

using H(t) the problem is “oracular,” that is, we use no knowledge about the structure of HP which

could aid us in finding w other than (4.21).

We can write H̃(s) explicitly as

H̃(s) = (1 − s)

n∑

j=1

1
2

(
1 − σ(j)

x

)
+ s

(
1 − |z = w〉 〈z = w|

)
. (4.22)

Consider the transformation given by (4.2). Under this transformation H̃(s) becomes

H̃(s) = (1 − s)

n∑

j=1

1
2 (1 − σ(j)

x ) + s
(
1 − |z = 0〉 〈z = 0|

)
. (4.23)

Because the two Hamiltonians (4.22) and (4.23) are unitarily equivalent they have the same spectra

and accordingly the same gmin. Thus it suffices to study (4.23).

The ground state of H̃(0) is |x = 0〉, which is symmetric under the interchange of any two bits.

Also the operator (4.23) is symmetric under the interchange of any two bits. Instead of working in the

2n-dimensional space we can work in the (n+ 1)-dimensional subspace of symmetrized states. It is

convenient (and perhaps more familiar to physicists) to define these states in terms of the total spin.

Define ~S = (Sx, Sy, Sz) by

Sa = 1
2

n∑

j=1

σ(j)
a (4.24)

for a = x, y, z. The symmetrical states have ~S 2 equal to n
2 (n

2 + 1), where ~S 2 = S2
x + S2

y + S2
z . We can

characterize these states as either eigenstates of Sx or Sz

Sx |mx = m〉 = m |mx = m〉 m = −n
2 ,−n

2 + 1, . . . , n
2

Sz |mz = m〉 = m |mz = m〉 m = −n
2 ,−n

2 + 1, . . . , n
2 (4.25)
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where we have suppressed the total spin label since it never changes. In terms of the z basis states

previously introduced,

∣∣mz = n
2 − k

〉
=

(n
k

)− 1

2
∑

z1+z2+···+zn=k

|z1〉 |z2〉 · · · |zn〉 (4.26)

for k = 0, 1, . . . , n. In particular

∣∣mz = n
2

〉
= |z = 0〉 . (4.27)

Now we can write H̃(s) in (4.23) as

H̃(s) = (1 − s)
[

n
2 − Sx

]
+ s

[
1 −

∣∣mz = n
2

〉 〈
mz = n

2

∣∣] . (4.28)

We have reduced the problem, since H̃(s) is now an (n + 1)-dimensional matrix whose elements we

can simply evaluate.

We wish to solve

H̃(s) |ψ〉 = E |ψ〉 (4.29)

for the lowest two eigenvalues at the value of s at which they are closest. Hitting (4.29) with〈
mx = n

2 − r
∣∣ we get

[s+ (1 − s)r]
〈
mx = n

2 − r
∣∣ ψ

〉
− s

〈
mx = n

2 − r
∣∣mz = n

2

〉 〈
mz = n

2

∣∣ ψ
〉

= E
〈
mx = n

2 − r
∣∣ ψ

〉
. (4.30)

We replace E by the variable λ where E = s+ (1 − s)λ and obtain

(1 − s)

s

〈
mx =

n

2
− r

∣∣∣ ψ
〉

=
1

r − λ

〈
mx =

n

2
− r

∣∣∣mz =
n

2

〉 〈
mz =

n

2

∣∣∣ ψ
〉
. (4.31)

Multiply by
〈
mz = n

2

∣∣mx = n
2 − r

〉
and sum over r to get

(1 − s)

s
=

n∑

r=0

1

r − λ
Pr (4.32)

where

Pr =
∣∣∣
〈
mz =

n

2

∣∣∣mx =
n

2
− r

〉 ∣∣∣
2

. (4.33)

Using (4.26) with k = 0 and also the identical formula with z replaced by x we have

Pr =
1

2n

( n

r

)
. (4.34)

The eigenvalue equation (4.32) has n + 1 roots. By graphing the right-hand side of (4.32) and

keeping 0 < s < 1 we see that there is one root for λ < 0, one root between 0 and 1, one root between

1 and 2, . . . , and one root between n − 1 and n. The two lowest eigenvalues of E = s + (1 − s)λ

correspond to the root with λ < 0 and the root with 0 < λ < 1. We will now show that there is a

value of s for which these two roots are both very close to zero.
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The left-hand side of (4.32) ranges over all positive values as s varies from 0 to 1. Pick s = s∗ such

that

(1 − s∗)

s∗
=

n∑

r=1

Pr

r
. (4.35)

At s = s∗ the eigenvalue equation (4.32) becomes

P0

λ
=

n∑

r=1

Pr
λ

r(r − λ)
. (4.36)

From (4.34) we know that P0 = 2−n. Define u by λ = 2−n/2u. Then (4.36) becomes

1

u
=

n∑

r=1

Pr
u

r(r − 2−n/2u)
. (4.37)

Because of the 2−n/2 we can neglect the u piece in the denominator and we get

1

u2
≈

n∑

r=1

Pr

r2
(4.38)

which gives

λ ≈ ±
( n∑

r=1

Pr

r2

)− 1

2

2−n/2 (4.39)

and we have

gmin ≈ 2(1 − s∗)
( n∑

r=1

Pr

r2

)− 1

2

2−n/2 . (4.40)

Now

n∑

r=1

Pr

r
=

2

n
+O

( 1

n2

)
(4.41)

and

n∑

r=1

Pr

r2
=

4

n2
+O

( 1

n3

)
. (4.42)

So using (4.35) and (4.40) we have

gmin ≃ 2 · 2−n

2 (4.43)

which is exponentially small.

In Fig. 7 we show the two lowest eigenvalues of H̃(s) for the case of 12 bits. If you evolve too

quickly the system jumps across the gap and you do not end up in the ground state of H̃(1).

That gmin goes like 2−n/2 means that the required time for finding the satisfying assignment grows

like 2n and quantum adiabatic evolution is doing no better than the classical algorithm which checks

all 2n variable assignments. In reference [3] a Hamiltonian version of the Grover problem was studied

with a time dependent Hamiltonian of the form

H(t) = HD(t) + (1 − |z = w〉 〈z = w|) . (4.44)
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Figure 7: The two lowest eigenvalues of H̃(s) for the Grover problem with 12 bits.

The goal was to chooseHD(t) without knowing w so that Schrödinger evolution from a w-independent

initial state would bring the system to |z = w〉 in time T . There it was shown how to choose HD so

that the required running time T grows as 2
n

2 , which is then interpreted as the square-root speedup

found by Grover. It was also shown that for anyHD(t), T must be at least of order 2
n

2 for the quantum

evolution to succeed for all w. (The continuous time bound found in [3] is closely related to the query

bound found first in [4].) A slight modification of the argument which gives this lower bound can be

made for quantum evolution with

H(t) = HD(t) +
t

T
(1 − |z = w〉 〈z = w|) (4.45)

and again T must be at least of order 2
n

2 . The adiabatic evolution we studied in this section corresponds

to HD(t) = (1 − t/T )HB with HB as described above. The lower bound just discussed shows that no

choice of HB can achieve better than square-root speedup.

4.3 The Bush of Implications

Ultimately we would like to know if there are general (and identifiable) features of problems which

can tell us about the size of gmin. For the 2-SAT example of Section 4.1, gmin is of order 1/n whereas

for the Grover problem it is of order 2−n/2. In the Grover case HP has the property that 2n −1 states

have energy 1, that is, there are an exponential number of states just above the ground state. For

the ring problem this is not so. With HP of the form (4.3) there are no states with energy 1 and

(roughly) n2 states with energy 2. Here we present an example with an exponential number of states

with energy 1 but for which the gap is of order 1/np. This tells us that we cannot judge the size of

the minimum gap just from knowledge of the degeneracy of the first level above the ground state of

HP.

The example we consider has n+ 1 bits labeled 0, 1, 2 . . . , n. There are n 2-bit imply clauses, each

of which involves bit 0 and one of the other n bits. Recall that the imply clause is satisfied by the bit
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values 00, 01 and 11 but not by 10. Furthermore we have a one-bit clause that is satisfied only if bit

0 has the value 1. The unique satisfying assignment of all clauses is z0 = 1, z1 = 1, z2 = 1, . . . , zn = 1.

Figure 8: The bush of implications. There is a one-bit clause that is satisfied if bit 0 has a value of 1.

There are n imply clauses. The jth imply clause is satisfied unless bit 0 has the value 1 and bit j has

the value 0.

Suppose that z0 = 0. Any of the 2n values of z1, z2, . . . , zn satisfy all of the imply clauses. Only

the one bit clause is not satisfied, so these 2n variable assignments violate only one clause. There

are n other variable assignments that violate only one clause. These have all bits set to 1 except for

the kth bit where 1 ≤ k ≤ n. In total there are 2n + n assignments that violate only one clause and

accordingly there are an exponential number of states with energy 1.

We can write HP explicitly as

HP = 1
2 (1 + σ(0)

z ) + 1
4

n∑

j=1

(1 − σ(0)
z )(1 + σ(j)

z ) . (4.46)

To evaluate HB from (2.22) note that bit 0 is involved in n+ 1 clauses whereas bits 1 through n are

each involved in only one clause, so

HB = (n+ 1)1
2 (1 − σ(0)

x ) +

n∑

i=1

1
2 (1 − σ(i)

x ) . (4.47)

Then H̃(s) in terms of the spin operators (4.24) is

H̃(s) = (1 − s)
[n+ 1

2
(1 − σ(0)

x ) +
n

2
− Sx

]
+ s

[
1
2 (1 + σ(0)

z ) + 1
2 (1 − σ(0)

z )
(n

2
+ Sz

)]
. (4.48)

We need only consider states that are symmetrized in the bits 1 to n. We can label the relevant states

as |z0〉 |mz〉 where z0 gives the value of bit 0 and mz labels the z component of the total spin as in

(4.25). We need to know the matrix elements of Sx in the |mz〉 basis. These are

〈m′
z | Sx |mz〉 = 1

2

[(n
2

(n
2

+ 1
)
−m2

z −mz

) 1

2

δmz,m′

z
−1

+
(n

2

(n
2

+ 1
)
−m′2

z −m′
z

) 1

2

δm′

z
,mz−1

]
. (4.49)

Given (4.49) we have numerically evaluated the eigenvalues of the 2(n + 1)-dimensional matrix

with elements

(
〈z′0| 〈m′

z|
)
H̃(s)

(
|z0〉 |mz〉

)
(4.50)

for values of n in the range from 20 to 120. The two lowest eigenvalues are shown in Fig. 9 for n = 50.

The gap is clearly visible. In Fig. 10 we plot log(gmin) versus log(n) and a power law dependence is
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Figure 9: The two lowest eigenvalues of H̃(s) for the bush of implications with n = 50. The visible

gap indicates that gmin is not exponentially small.

clearly visible. We conclude that gmin ∼ n−p with p ≃ 3
8 . For this problem the maximum eigenvalue

of HB is 2n + 1 and the maximum eigenvalue of HP is n + 1, so E , which appears in (2.8), at most

grows linearly with n. Therefore we have that with T of order n(1+2p) adiabatic evolution is assured.

We also analyzed adiabatic evolution for the bush of implications using a different prescription for

the initial Hamiltonian. We tried

H ′
B =

n∑

i=1

H
(i)
B (4.51)

as opposed to (2.22). This has the effect of replacing the factor of (n+1) in (4.47) with a 1. The effect

on gmin is dramatic. It now appears to be exponentially small as a function of n. This means that

with the choice of H ′
B above, quantum adiabatic evolution fails to solve the bush of implications in

polynomial time. This sensitivity to the distinction between HB and H ′
B presumably arises because

bit 0 is involved in (n+ 1) clauses. This suggests to us that if we restrict attention to problems where

no bit is involved in more than, say, 3 clauses, there will be no such dramatic difference between using

HB or H ′
B.

4.4 Overconstrained 2-SAT

In this section we present another 2-SAT problem consisting entirely of agree and disagree clauses.

This time every pair of bits is involved in a clause. We suppose the clauses are consistent, so there

are exactly 2 satisfying assignments, as in Section 4.1. In an n-bit instance of this problem, there are( n
2

)
clauses, and obviously the collection of clauses is highly redundant in determining the satisfying

assignments. We chose this example to explore whether this redundancy could lead to an extremely

small gmin. In fact, we will give numerical evidence that gmin goes like 1/np for this problem, whose

symmetry simplifies the analysis.
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Figure 10: The bush of implications; log(gmin) versus log(n) with n ranging from 20 to 120. The

straight line indicates that gmin ∼ n−p.

As with the problem discussed in Section 4.1, at the quantum level we can restrict our attention

to the case of all agree clauses, and we have

HP =
∑

j<k

Hjk
agree . (4.52)

Each bit participates in (n− 1) clauses, so when constructing HB using (2.22) we take di = n− 1 for

all i. We can write H̃(s) explicitly for this problem

H̃(s) = (1 − s)(n− 1)

n∑

j=1

1
2 (1 − σ(j)

x ) + s
∑

j<k

1
2 (1 − σ(j)

z σ(k)
z ) (4.53)

which in terms of the total spin operators Sx and Sz is

H̃(s) = (1 − s)(n− 1)
[n
2
− Sx

]
+ s

[n2

4
− SzSz

]
. (4.54)

As in Section 4.3, it is enough to consider the symmetric states |mz〉. Using (4.49), we can find the

matrix elements

〈m′
z| H̃(s) |mz〉 (4.55)

and numerically find the eigenvalues of this (n+ 1) × (n+ 1)-dimensional matrix.

Actually there are two ground states of H̃(1),
∣∣mz = n

2

〉
and

∣∣mz = −n
2

〉
, corresponding to all

bits having the value 0 or all bits having the value 1. The Hamiltonian H̃(s) is invariant under the

operation of negating all bits (in the z basis) as is the initial state given by (2.21). Therefore we can

restrict our attention to invariant states. In Fig. 11 we show the two lowest invariant states for 33 bits.

The gap is clearly visible. (E1(0) = 64 = 2(33 − 1) because the invariant states all have an even
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Figure 11: The two lowest eigenvalues of H̃(s), restricted to the invariant subspace, for overconstrained

2-SAT with n = 33. The visible gap indicates that gmin is not exponentially small.

number of 1’s in the x-basis.) In Fig. 12 we plot log(gmin) against log(n). The straight line shows that

gmin ∼ np with p ≃ 0.7. For this problem the maximum eigenvalues of HB and HP are both of order

n2 so E appearing in (2.8) is no larger than n2. Adiabatic evolution with T only as big as n(2−2p) will

succeed in finding the satisfying assignment for this set of problems.

5 The Conventional Quantum Computing Paradigm

The algorithm described in this paper envisages continuous-time evolution of a quantum system, gov-

erned by a smoothly-varying time-dependent Hamiltonian. Without further development of quantum

computing hardware, it is not clear whether this is more or less realistic than conventional quantum

algorithms, which are described as sequences of unitary operators each acting on a small number of

qubits. In any case, our algorithm can be recast within the conventional quantum computing paradigm

using the technique introduced by Lloyd [5].

The Schrödinger equation (2.1) can be rewritten for the unitary time evolution operator U(t, t0),

i
d

dt
U(t, t0) = H(t)U(t, t0) (5.1)

and then

|ψ(T )〉 = U(T, 0) |ψ(0)〉 . (5.2)

To bring our algorithm within the conventional quantum computing paradigm we need to approximate

U(T, 0) by a product of few-qubit unitary operators. We do this by first discretizing the interval [0, T ]

and then applying the Trotter formula at each discrete time.

The unitary operator U(T, 0) can be written as a product of M factors

U(T, 0) = U(T, T − ∆)U(T − ∆, T − 2∆) · · ·U(∆, 0) (5.3)
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Figure 12: Overconstrained 2-SAT; log(gmin) versus log(n) with n ranging from 33 to 203. The straight

line indicates that gmin ∼ np.

where ∆ = T/M . We use the approximation

U((ℓ+ 1)∆, ℓ∆) ≃ e−i∆H(ℓ∆) (5.4)

which is valid in (5.3) if

∥∥∆H(t1) − ∆H(t2)
∥∥ ≪ 1

M
for all t1, t2 ∈ [ℓ∆, (ℓ+ 1)∆] . (5.5)

Using (2.23) this becomes

∆
∥∥HP −HB

∥∥ ≪ 1 . (5.6)

We previously showed (in the paragraph after Eq. (2.29)) that ‖HP −HB‖ grows no faster than the

number of clauses, which we always take to be at most polynomial in n. Thus we conclude that the

number of factors M = T/∆ must be of order T times a polynomial in n.

Each of the M terms in (5.3) we approximate as in (5.4). Now H(ℓ∆) = uHB + vHP where

u = 1 − (ℓ∆/T ) and v = ℓ∆/T are numerical coefficients each of which is between 0 and 1. To use

the Trotter formula

e−i∆H(ℓ∆) ≃ (e−i∆uHB/Ke−i∆vHP/K)K (5.7)

for each ℓ, ℓ = 0, 1, . . . ,M − 1, we need K ≫M
(
1 + ∆ ‖HB‖ + ∆ ‖HP‖

)2
. Since ‖HB‖ and ‖HP‖ are

at most a small multiple of the number of clauses, we see that K need not be larger than M times a

polynomial in n.

Now (5.7) is a product of 2K terms each of which is e−i∆uHB/K or e−i∆vHP/K . From (2.22) we see

that HB is a sum of n commuting one-bit operators. Therefore e−i∆uHB/K can be written (exactly)

as a product of n one-qubit unitary operators. The operator HP is a sum of commuting operators,
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one for each clause. Therefore e−i∆vHP/K can be written (exactly) as a product of unitary operators,

one for each clause acting only on the qubits involved in the clause.

All together U(T, 0) can be well approximated as a product of unitary operators each of which

acts on a few qubits. The number of factors in the product is proportional to T 2 times a polynomial

in n. Thus if the required T for adiabatic evolution is polynomial in n, so is the number of few-qubit

unitary operators in the associated conventional quantum computing version of the algorithm.

6 Outlook

We have presented a continuous-time quantum algorithm for solving satisfiability problems, though

we are unable to determine, in general, the required running time. The Hamiltonian that governs the

system’s evolution is constructed directly from the clauses of the formula. Each clause corresponds

to a single term in the operator sum that is H(t). We have given several examples of special cases

of the satisfiability problem where our algorithm runs in polynomial time. Even though these cases

are easily seen to be classically solvable in polynomial time, our algorithm operates in an entirely

different way from the classical one, and these examples may provide a small bit of evidence that our

algorithm may run quickly on other, more interesting cases.
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