
Physics 501-20
Accelerated Detector

In special relativity, a detector with a constant acceleration follows a path
given by

t =
1

a
sinh(aτ) (1)

x =
1

a
cosh(aτ) (2)

Here a is the acceleration and τ is the proper time along the trajectory of the
detector. (we have dt = cosh(aτ)dτ ; dx = sin(aτ)dτ for small dτ . Then
dt2 − dx2 = (cosh2(aτ)− sinh(aτ)2)dτ2 = dτ2, which is just the expression for
the proper time along the path.

Note that for τ near 0,

t ≈ τ (3)

x ≈ 1

a
+

1

2
aτ2 =

1

a
+

1

2
at2 (4)

which is just the equation for an accelerated object.
(Note that I am using units in which c = 1 just as I used units in the quantum

parts so that h̄ = 1.)
The first thing is that for the detector, it is the proper time, not the time

t which determines its internal dynamics.Thus for the two level system, the
equations will be

σ− = σ0−e
−iEτ = σ0−e

−i(E/a)arcsinh(at) (5)

Secondly, the trajectory of the detector is x0 =
√

1
a2 − t2. Thus if we have such

an accelerated detector, the interaction Hamiltonian will be (given again that
|ψ, 0〉 = |φ〉 |↓〉)
∫

HI |φ〉 |↓〉 = ǫ

[

∫

eiEτ(t′)
∑

i

(

Ai∂
′
tφi(t

′, x(t′)) +A†
i∂

′
tφ

∗
i (t

′, x(t′)
)

dt′

]

(6)

In the case where the detector was at rest, the integral over t’ picked out
the Ai terms because we chose φi to have only temporal components what went
as e−iωt. Now however, it is not just the temporal parts of ψ(t, x) which are
important but also the spatial terms since the position of the detector is not
constant, but is a function of time.

Because the detector has proper time dependence, we can switch our inte-
gration to make the integration variable be τ rather than t.

We have dt′ = dt′

dτ dτ Also

∂t′φ(t, x(t
′)) =

dτ

dt′
∂τφ(t(τ), x(τ)) =

1
dt′

dτ

∂τφ(t(τ), x(τ)) (7)
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and thus

∂t′φ(t, x(t
′))dt′ = ∂τφ(t(τ), x(τ))dτ (8)

It would be really easy if we could choose our modes φi(t(τ), x(τ)) such that
they went like eiωτ , but were still made up solely of temporal Fourier modes
with temporal dependence eiωt,since then the integral over τ would be easy.
Fortunately such modes exist.

I will here restrict myself to 1+1 dimensions, and to a massless (m = 0)
field. While the calculations are far easier there, they can be carried out almost
as easily for a massive field theory and in higher than 1 spatial dimensions.

What we would like is to have the modes φi go as e−iντ . Let us look at the
solutions of the field equations.

∂2t φ− ∂2xφ = 0. (9)

we can solve this with Fourier modes e−i(ωt−kx) with ω = |k| One thus has the
solutions e−i|k|(t−x) or ei|k|(t+x). Writing t and x in terms of τ we have these
solutions as

e−i|k|t(τ)−x(τ) = e−i(|k|(−e−aτ )/a (10)

e−i|k|(t(τ)+x(τ) = e−i(|k|/a(eaτ )/a (11)

Which is a bit of mess. We can certainly do the required integral, but there is
an easier way.

Let us define a new coordinate system, τ, ρ where

t =
1

a
sinh(aτ)eaρ (12)

x =
1

a
cosh(aτ)eaρ (13)

where ρ = 0 is the path of the detector. One problem is that for all ρ, eiaρ is
positive, so this new set of coordinates cover just the positive values of x. To
also cover the negative values of x, define another coordinate ρ′ so that

t =
1

a
sinh(aτ)eaρ

′

(14)

x = −1

a
cosh(aτ)eaρ

′

(15)

These coordinates are a version of what are called Rindler coordinates, af-
ter Wolfgang Rindler, a physicist who died a year ago, and was responsible
for many of the ”paradoxes” that you have studied in your special relativity
course. It was named that by Steve Fulling, who, after having studied Parker’s
cosmological quantisation papers, got interested in flat spacetime. Einstein
and Rosen, in a footnote of their famous wormhole paper, had showed that a
coordinate change like the above was possible in flat spacetime. Rindler had
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rediscovered it, and emphasized the similarity of this set of flat spacetime coor-
dinates to the Schwartzschild coordinates used by Schwartzschild in his solution
to Einstein’s gravitational theory, what we now call a black hole solution. The
ρ = −∞, τ = ±∞ surface, (t± x = 0), is similar to the horizon of a black hole,
r = 2GM/c2, t = ±infty, surfaces. (eaρ → r − 2GM).

The equation of motion of the quantum field obtained by substituting τ, ρ
for t, x turns out to be

0 = ∂2t φ− ∂2xφ = ∂2τφ− ∂2ρφ = 0 (16)

(If the field is a massive field or is in more than 1+1 dimensions, additional
functions of ρ enter the equations. ) One gets the same for τ, ρ′. (if one used
the massive field, the equivalence would be

0 = ∂2t φ− ∂2xφ+m2φ = ∂2τφ− ∂2ρφ+
e2aρ

a2
m2 (17)

The Lagrangian action becomes

1

2

∫ ∫

[(∂tφ)
2 − (∂xφ)

2 +m2φ2]dxdt (18)

=
1

2

∫

((∂τφ)
2 − (∂ρφ)

2 + e2aρm2φ2]dρdτ (19)

(and we will use m = 0 to simplify things) Since these equations are τ and ρ
independent, we can solve them by the same harmonic trick

φκ(τ, ρ) =
e−i|κ|(τ±ρ)

√

2|κ|(2π)
(20)

At ρ = 0 this has τ dependence of e−i|κ|τ which is exactly the time dependence
we want to make the integral in the detector response trivial.

Define new coordinates,

U = t− x; V = t+ x (21)

u = τ − ρ, v = τ + ρ (22)

u′ = τ + ρ′; v′ = τ − ρ′ (23)

Then we have

U = −1

a
e−auθ(−U) +

1

a
eau

′

θ(U) (24)

V =
1

a
eavθ(V )− 1

a
eav

′

θ(−V ) (25)

The field equation in terms of these null coordinates are

∂2t φ− ∂2xφ = 2∂U∂V φ = 2e−a(v−u)∂u∂vφ = e2aρ(∂2τφ− ∂2ρφ) = 0 (26)
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Thus the conjugate momentum along the τ = t = 0 is

π = ∂tφ = e−aρ∂τφ (27)

and the inner product is

< φ, φ′ >=

∫

e−aρ(φ∗∂τφ
′ − ∂τφ

∗φ′)dx (28)

=

∫

(φ∗∂τφ
′ − ∂τφ

∗τφ′)dρ (29)

since along τ = 0 the relation between dx and dρ is

dx = sin(aτ)eaρdt+ cosh(aτ)eaρdρ = eaρdρ (30)

Again, the inner product is independent of the time τ so The inner product
will be the same.

For ρ′ (x¡0), we get the same with ρ→ ρ′.
Let us look at these ”Rindler modes” with the v dependence.

e−i|κ|(τ+ρ) = e−i|κ|v = (
1

a
eav)−i

|κ|
a (31)

= V −i
|κ|
a (32)

There is a theorem that if one makes a function out of only positive fre-
quencies f =

∫∞

0
alphaωe

−iωtdω, then f must be analytic for Im(t) < 0.

(e−iωt = e−iωRe(t)e−omegaIm(t) which goes to 0 for large ω.
Let us look at the above modes. For the V modes, since V = t − x, as V

increases, so does t (as long as say x(t) is timelike).
The problem with this function is at V = 0 where the function has a singu-

larity. We can make it analytic in the upper Im(V ) by deforming the integral

path of V into the lower plane Ie, limλ→+0(V + iλ)±i
|κ|
a is analytic in the upper

half Im(V ) half plane and is made up of Fourier components e−iωV . This is
true independent of the sign of ±|κ|.

Let us look at the functions

φΩ(V ) = (V + iλ)iΩ/a (33)

φΩ(U) = (U + iλ)iΩ/a (34)

where Ω is real but of arbitrary sign. The iλ notation indicates that λ is positive,
and that one takes the limit of λ goes to 0 from the positive direction. The
singularity occurs at V = −iλ and as a result the functions are analytic and
bounded in the whole positive imaginary V plane for all real Ω. The norm is

φΩ, φ
′
ω >= i

∫

(φ∗Ω∂tφ
′
Ω − φ′Ω∂tφ

∗
Ω)dx (35)

= i

∫

(φ∗Ω∂V φ
′
Ω − φ′Ω∂V φ

∗
Ω)dV (36)
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since ∂tV = ∂xV = 1.

φΩ, φ
′
ω >= i

∫

(φ∗Ω∂tφ
′
Ω − φ′Ω∂tφ

∗
Ω)dx (37)

= i

∫

(φ∗Ω∂vφ
′
Ω − φ′Ω∂vφ

∗
Ω)dv +

∫

(φ∗Ω∂vφ
′
Ω − φ′Ω∂ṽφ

∗
Ω)dṽ (38)

where v = τ + ρ and ṽ = τ − ρ′. Now,

φΩ(V + i(λ = +0)) = V iΩ/aθ(V ) + e−πΩ/a(−V )iΩ/a (39)

since near 0 the phase of V goes from 0 radians to π radians as V goes from
positive to negative values of V. Thus the phase of V, the imaginary part of
ln(V ) goes from 0 to π as V goes from positive to negative values. Since the
phase is multiplied by iΩ/a, we get that the amplitude for negative values of
V is smaller than positive by e−πΩ/a. If Ω is positive, then the amplitude for
negative V is exponentially smaller than for positive V. If Ω is negative, then
negative amplitudes are exponentially larger than for positive V.

We can now evaluate the norm.

< φΩ , φ′Ω >

=

∫ ∞

0

(aV )−iΩ/a∂V (aV )iΩ
′/a − ∂V (aV )−iΩ/a(aV )iΩ

′/a)dV (40)

+

∫ 0

−∞

e−π(Ω+Ω′)/a(a|V |)−iΩ/a∂V (a|V |)iΩ′/a − ∂V (a|V |)−iΩ/a(a|V |)iΩ′/a)dV(41)

= i(1− e−π(Ω+Ω′)/aai(Ω
′−Ω)i(Ω + Ω′)

∫ ∞

0

|V |i(Ω−Ω′)/a

|V | d|V | (42)

(43)

But
∫ ∞

0

|V |i(Ω−Ω′)/a d|V |
|V | =

∫ ∞

−∞

ei(Ω−Ω′)ζ/adζ = 2πδ((Ω− Ω′)/a) (44)

where |V | = eζ .
Thus

< φΩ, φΩ′ >= 2πaδ(Ω− Ω′)(1− e−π(2Ω)/a = 2πδ(Ω− Ω′)
sinh(πΩ/a)

e−πΩ/a
(45)

Thus the Normalisation factor for these modes is N=eπΩ/(2a)√
(2Ω sinh(πΩ/a)

. (since both

Ωand sinh(πΩ/a) are odd functions of Ω, the quantity under the square root is
always positive)

For positive Ω, this mode is concentrated in the right Rindler Wedge (V > 0).
for negative Ω it is concentrated in the left wedge.

One can go through exactly the same procedure for the U modes. One gets

φΩ =
1

√

2Ω sinh(πΩ/a)
(eπΩ/(2a)θ(U) + e−πΩ/(2a)θ(−U))|aU |−iΩ/a (46)
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so again for positive Ω the mode is dominant in the sector U > 0 and is smallest
in the U < 0 sector. For Ω < 0 the opposite is again true.

Since each of these positive norm modes can be written in terms of the
Minkowski positive norm ”Hamiltonian-diagonalisation” modes, the annihila-
tion operators of these modes will be linear combinations of the Minkowski
”Hamiltonian diagonalisation” Annihilation operators and have the same vac-
uum state |0〉. So, let us choose our φi to be these modes.

Φ =

∫ ∞

−∞

eπΩ/2a

√

2Ω sinh(πΩ/2a)2π

[

AΩv(e
−iΩ(τ+ρ) +A−Ωue

iΩ(τ−ρ))
]

+HC; x > 0(47)

=

∫ ∞

−∞

eπΩ/2a

√

2Ω sinh(πΩ/2a)2π

[

A−Ωv(e
−iΩ(τ+ρ′) +AΩue

iΩ(τ−ρ′))
]

+HC; x < 0(48)

The state defined by

AΩu |0〉 = AΩv |0〉 = 0 (49)

is exactly the same as the vacuum state defined by the usual Minkowski Anni-
hilation operators. Note that these states are defined for all Ω, not just positive
values. This is another example that ”positive frequency” is NOT a sensible
criterion for defining the modes corresponding to annihilation and creation op-
erators.

This can be inserted into the expression for the first order amplitude for the
detector. Since the detector lives solely in the region x¿0, we only need the
expression for the detector in the right hand wedge Let us choose the state to
be the Minkowski vacuum state. This is the state where particle detectors at
rest seen nothing. Choosing the initial state of the field to be the Minkowski
vacuum state, the annihilation operators all give 0 on that vacuum state. The
detector is located at ρ = 0 . If T is large then the integral will pick out Ω only
near -E.

|ψ, 0〉 = |0〉 |↓〉 (50)

|δψ, T 〉 ≈ −iǫE e−πE/2a

√

2πE sinh(πE/a)

∫ T

0

eiEτe−iΩτA†
−Ω |0〉 dΩdτ (51)

The probability of detection will be

P↑ = 〈δψ, T | |↑〉 〈↑| |δψ, T 〉 (52)

= ǫ2
e−2πE/a

(1− e−2πE/a)

E

4π

∫

|
∫ T

0

ei(E−Ω)τdτ |2dΩ (53)

The first term is expected as the probability should grow as ǫ2. The second term
is just the Einstein-Bose thermal factor with temperature of a

2π . The third is

|
∫ T

0

ei(E−Ω)τdτ |2 =

(

sin((E − Ω)T/2)

E − Ω

)2

(54)
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and

∫
(

sin((E − Ω)T/2)

E − Ω

)2

dΩ = πT/2 (55)

Ie, the probability grows linearly in time, which is what one would expect of a
random excitation probability.

The detector is excited at a constant rate, and with a factor that is just the
thermal factor times a ”cross section” for detection in flat spacetime.

7


