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As mentioned in the last note, we can solve the Shroedinger equation for-
mally by defining the Unitary matrix, U(t, t′)

i
d

dt
U(t, t′) = H(t)U(t, t′) (1)

where multiplication is matrix (or operator) multiplication. The formal solution
to this is

U(t, t′) = Te
−i

∫ t

t′
H(t1)dt1 (2)

where T is the time ordering operator. Ie, expand the exponential into its taylor
series, and in each of the terms rearrange all the H(t1) so that the later time
operators are all to the left of any earlier time operators. This ensures that
U(t, t′) = U(t, t̃)U(t̃, t′) which we would want for the operators, but would not
be true if the T were not there. Ie,

U(t, t′) = lim
N→∞

U(t′ +Nτ, t′ + (N − 1)τ)U(t′ + (N − 1)τ, t′ − (N − 2)τ)(3)

...U(t′ + 2τ, t′ + τ)U(t′ + τ, t′) (4)

where τ = t−t′

N .
As stated, in Schoedinger representation,

|ψ〉 (t) = U(t, t′) |ψ〉 (t′) (5)

In the Heisenberg representation, H is the Hamiltonian in terms of the time
dependent dynamic variables, H(P(t),X(t),t). The equation of motion for a
dynamic variable is

i
d

dt
A(P (t), X(t)) = [A(P (t), X(t)), H(P (t), X(t), t)] (6)

Defining

i
d

dt
UH(t, t′) = H(P (t), X(t), t)UH(t, t′) (7)

U(t′, t′) = I (8)

where I is the identity operator, and defining

A(t) = U †(t, t′)A(P (t′), X(t′))U(t, t′) (9)

= A(U †(t, t′)P (t′)U(t, t′), U †(t, t′)X(t′)U(t, t′)) = A(P (t), X(t))(10)

Then

i
dA(t)

dt
= −U †(t, t′)H(t, P (0), X(0))A(t′)U(t, t′) + U †(t, t′)A(t′)H(t, P (t′), X(t′))U(t, t′)(11)

= −H(t, P (t), X(t))U †(t, t′)A(t′)U(t, t′) + U †(t, t′)A(t′)U(t, t′)H(t, P (t), X(t))(12)

1



since H(t)† = H(t)
Note that we can look at the expectation value of the operator A, which,

by Born’s rule (generalised to a generic operator A ratehr than just X). Let us
desinate the expectation value of A by < A >

< A >= 〈ψ|A |ψ〉 (13)

In the Schroedinger representation, we have

< A(t) >= 〈ψ| (t)A |ψ〉 (t) = (〈ψ| (t′)U †(t, t′))A(t′)(U(t, t′) |ψ〉 (t′)) (14)

But we can rewrite this as

< A(t) >= 〈ψ| (t′)(U †(t, t′))A(t′)U(t, t′)) |ψ〉 (t′) (15)

Intraction Representation

Let us consider a Hamiltonian which is made up of two terms

H = H0 +HI (16)

Define U, U0 by

i∂tU(t, t′) = (H0 +HI)U(t, t′) (17)

i∂tU0(t, t
′) = H0U0(t, t

′) (18)

Then we have

< A(t) > = 〈ψ| (t′)U †(t, t′)A(t′)U(t, t′) |ψ〉 (t′) = 〈ψ| (t′)U †(t, t′)A(t′) |ψ〉 (t′)

= (〈ψ| (t′)U †U0(t, t
′))U †

0 (t, t
′)A(t′)U0(t, t

′)(U †
0U(t, t′)) |ψ〉 (t′) (19)

The central term U
†
0 (t, t

′)A(t′)U0(t, t
′) is just the Heisenberg evolution of A

if the Hamiltonian were H0. The state (U †
0U(t, t′)) |ψ〉 (t′) is the Schrodinger

representation state as though the evolution were driven by the Unitary operator
(U †

0U(t, t′)). This obeys the equation

i
d

dt
(U †

0 (t, t
′)U(t, t′)) (20)

= −U †
0 (t, t

′)H0U(t, t′) + U0(t, t
′)(H0 +HI)U(t, t′)

= U
†
0 (t, t

′)HIU0(t, t
′)U †

0 (t, t
′)U(t, t′) (21)

but U †
0 (t, t

′)HIU0(t, t
′) is the Heisenberg evolution operator for the oper-

ator HI . In general, even if H0 and HI are not explicitly time dependent,
U

†
0 (t, t

′)HIU0(t, t
′) will be time dependent since

U
†
0 (t, t

′)HI(P,X)U0(t, t
′) (22)

= HI(U
†
0 (t, t

′))P (t′)U0(t, t
′), U †

0 (t, t
′)X(t′)U0(t, t

′))

= HI(P (t), X(t)) (23)
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is in general explicitly time dependent.
If it is the case that the Hamiltonian H0 were easily solveable in the Heisen-

berg representation, then one could simplify the solution by first solving the
Heisenberg equation, substituting them in HI and then solve the Schroedinger
representation for the state in the interaction representation. If HI is small
(eg, is multiplied by a small coupling constant) then one could solve that
new Schroedinger equation perturbatively. The Heisenberg state for P (t), X(t)
should stay near the intial state.

One can solve the system perturbatively, either with the Magnus expansion
of the unitary operator, since each successive Ωn will have an exptra small
parameter ǫ, or with the Dyson expansion, in which one writes |ψI〉 as a power
series in ǫ, and solves the equation power by power in ǫ.

Lets take an example

H =
1

2
(P 2 +X2) + ǫ(t)X (24)

with H0 = 1
2 (P

2 + X2). This is of course easily solveable if ǫ is constant.
Defining Y = X + epsilon, then P is the conjugate momentum for Y as well,
and the Hamiltonian becomes H = 1

2 (P
2+Y 2−ǫ2) which we know how to solve

in either the Heisenberg or Schroedinger representations for all values of ǫ, but
that is not the point here and is not easily solvable if ǫ is a function of time. Let
us look at that solution in the Interaction representation with epsilon constant.

The Heisenberg equations for H0 are

∂tX = −i[X,H0] = P (25)

∂tP = −i[P,X] = −X (26)

Taking t′ = 0, the solution is

P0(t) = P (0)cos(t)−X(0)sin(t) (27)

X0(t) = X(0)cos(t) + P (0)sin(t) (28)

then we have the interaction representation perturbation operator

HI = ǫ(X(0)cos(t) + P (0)sin(t)) (29)

This is clearly time dependent.
Let us assume that we start with the ground state of the H0 for the the

intial state. In the X basis this would be ψ0(x) =
e−x2/2

(2π)1/4
. Then the equation

for ψ(x, t) would be

i
d

dt
ψ(x, t) = ǫ(x cos(t)− i sin(t)∂x)ψ(x, t) (30)

In the Dyson expansion we would write

ψ(x, t) =
∑

n

ǫnψn(x, t) (31)
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and equating the equation power by power of ǫ

ψ̇n(t, x) = (x cos(t)− i sin(t)∂x)ψn−1(t, x) (32)

Thus

iψ̇1 = (x cos(t)− i sin(t)∂x)ψ0(x) (33)

iψ̇2 = (x cos(t)− i sin(t)∂x)ψ0(x) (34)

... (35)

The first equation becomes (recalling that P = −i∂x

ψ1 = −i

∫

(e−x2/2(cos(t)x+ isin(t)x)ψ0(x)dt = −xe−x2

(eit − 1) (36)

The second becomes

ψ2 = e−x2/2

(

e2∗I∗t(
−2x2 + 1)

4
) + eit(

−2x2 + 1

2
(37)

+
1

2
x2 −

3

4
+

1

2
it+

1

2
e−it

)

(38)

and one can continue in this way with successive terms becoming more and more
complex. Furthermore, if we truncate at some order N, then

∑N
0 ǫnψn will not

have unit norm, even if ψ0 is. The transformation is not unitary.
The Magnus exansion is simplified because

[HI(t), HI(t
′′)] = iǫ2(cos(t) sin(t′′)− sin(t) cos(t′′)) (39)

is a c-number and thus all of the higher order terms than Ω2 in the expansion
are zero since they contain the commutator of a C number with an operator,
which is 0. Thus

Ω = ǫ(sin(t)x− i(cos(t)− 1)∂x) (40)

−iǫ2
∫ t

0

∫ t1

0

(
1

2
(cos(t1) sin(t2)− sin(t1) cos(t2))dt2dt1 (41)

The second term is just a phase, and can be ignored. Now, by the BakerCam-
bellHausorff relation, if the commutator of A and B is a C number, then

eA/2eBeA/2 = eA+B (42)

Thus

eαX+βP = eαX/2eβP eαX/2 (43)

Now,

eβP f(x) =
∑

n

βn(−i∂x)
n

n!
f(x) =

∑

n

(−iβ)n

n!
∂nx f(x) = f(x− iβ) (44)
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where the last terms comes from the Taylor series expansion of f .
Thus

eǫ(sin(t)X+(cos(t)−1)P )f(x) = esin(t)x/2e(cos(t)−1)P (ex sin(t)/2e−x2/2 (45)

= esin(t)x/2+(x−i(cos(t)−1))sin(t)/2−(x−i(cos(t)−1))2/2 (46)

Thus the Magnus expansion gives the exact solution in the interaction repre-
sentation.

Even if ǫ is a function of t, this allow us to solve the equation exactly. That
only the first two terms in the Magnus expansion are non-zero is still true, and
that the second term is an imaginary C-number since the exponential of this
term must be unitary, and the only unitary C-number is a pure phase, is also
still true.

Of course, in general it is not that simple. The Magnus expansion does not
usually terminate, and the first exponential is in general not easy to evaluate.
Thus it is usually the Dyson expansion that is used in the interaction picture.
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