
Physics 501-22
Heisenberg and Schroedinger

Heisenberg first came up with what we now know as QM in 1925 while a
post doc with Neils Bohr. Exactly how he did so is still a mystery to me.

His idea was to replace teh dynamic variables of ordinary classical Hamilto-
nian mechanics by ,what he later learned were matricees. Given a particle travel-
ling in 1-dimension, with dynamical variables x, p, the position and momentum
(which are represented in the mathematics by real functions of time) with square
complex matrices, X, P . These matrices were Hermitian (X† = (X∗)T = X,
P † = P ). These matrices were defined as operators on a complex vector space
H, with vectors which we will anachronistically designate by |ψ〉 (That notation
was invented by dirac about 5 years later). Matrix multiplication is famously
non-commutative such that if one defines the multiplication in the usual way

ABij =
∑

k

AikBkj (1)

then, in general AB 6= BA. Defining the commutator [A,B] = AB − BA he
required that [XP −PX] = iI where I is the identity matrix (AI = IA = A for
all A). This might well have been motivated by the classical Poisson bracket

{f(p, x), g(p, x)} = ∂xf∂pg − ∂pf∂xg (2)

Then classically, given some function of p, q which is the Hamiltonian one has
from classical Hamiltonian mechanics

d

dt
f(p, x) = {f(p, x), H(p, x)} (3)

He made this be

i
d

dt
F (P,X) = [F (P,X), H(P,X)] (4)

as the equation of motion for the matrices. Since measurements of dynamic
variables gave numbers rather than matrices, one had to come up with a rule
as to how one would transcribe outcomes of measurements on matrices into
numbers.

He solved the quantum mechanics of the simple harmonic oscillator and Pauli
solved the Heisenberg equations for the Hydrogen atom.

Given the classical Hamiltonian for an electron around a nucleus (the model
for an atomdeveloped by Rutherford in the early 1900), he wrote the classical
Hamiltonian

(p2x + p2y + p2z)

2m
− e2

√

x2 + y2 + z2
(5)

as an matrix function

P 2
x + P 2

y + P 2
z

2m
− e2√

X2 + Y 2 + Z2
(6)
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Classically, this equation has six constants of motion The energy E, given here by
H, the three components of the angular momentum vector ~L = ~X × ~P , and the

Runge Lens vector ~A = ~P×~L−me2 ~X
R
. Each of these quantum objects commuted

with H, given the commutation relations of ~X and ~P . Via an algebraic tour-de-
force, Heisenberg was able to solve the equations for the eigenvectors H, ~L · ~L
Lz and A2 and obtained essentially what Bohr had hypothesised to explain the
spectum of Hydrogen.

Shortly thereafter, without knowing what Heisenberg did, Schroedinger was
deeply impressed with the thesis work of deBroglie, who hypothesised that, just
as Einstein, 20 years earlier, had argued that electromagnetism, that prototypi-
cal field theory, was, under certain circumstances behaved as if it were made up
of particles, so matter (like electrons) could under certain circumstances behave
like waves. If so, what would the equation of those waves be? On his honey-
moon in the Austrian alps, Schroedinger wrote a series of papers, in which he
”guessed” at an equation.

i∂t(ψ(t, x, y, z)) =
1

2m
~∇ · ~∇ψ(t, x, y, z)− e2

√

x2 + y2 + z2
ψ(t, x, y, z) (7)

Again, he was able to solve this wave type equation. under the assumption that
∂tψ(t, x, y, z) = −iEψ(t, x, y, z), and found that the energies were exactly the
same as what Pauli, using Heisenberg’s formalism, had found. This was of course
supremely confusing, since one seemed to have two totally different theories
which gave the same answers. Once Schroedinger became aware of Heisenberg’s
work, he, ( and Dirac) quickly figured out that in fact the two theories were
equivalent. Instead of regarding X andP as matrices, one could regard them
as more general linear operators. Heisenberg’s matrices were operators which
acted on the vectors in the space H, while Schroedinger’s were operators acting
on the vector space of functions of x. In Schroedinger’s formalism, taking X to
be multiplication of the function by x and P to be complex differentiation

Pxψ(t, x, y, z) = −i∂xψ(t, x, y, z) (8)

one sees immediately that

XPxψ − PxXψ = x(−i∂xψ(t, x, y, z)− (−i∂x(xψ(t, x, y.z)) (9)

= x(−i∂xψ(t, x, y, z) + iψ(t, x, y, z) + x(i∂xψ(t, x, y, z)(10)

= iψ(t, x, y, z) = iIψ(t, x, y, z) (11)

where Iψ(t, x, y, z) = ψ(t, x, y, z).
What this ψ was was straightened out by Max Born (the same person who

had pointed out to Heisenberg that what he was doing was manipulting ma-
trices), who, in probably the most famous footnote in science, suggested that
ψ∗(t, x, y, z)ψ(t, x, y, z) should be interpreted as the probability density for find-
ing the particle at the location x, y, z at time t. It was easy to prove that the
total probability

P = ∂t

∫ ∫ ∫

|ψ(t, x, y, z)|2dxdydz = 0 (12)
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by the Schroedinger equation satisfied by ψ. If we interpret P as the probability
that that the particle should be somewhere at time t, it is natural to scale ψ
by a constant, so that P = 1, ie the probability is unity that the particle
be somewhere. This also implies that the probabilities are independent– ie,
there is zero probability that the particle is at more than one place at time
t ( the probability that it be both at x and x′ is zero since otherwise the
total probability would not equal the sum on the individual probabilities. A
fundmental theorem of probabilities is

Prob(x or x′) = Prob(x) + Prob(x′)− Prob(x and x′) (13)

It was rapidly realised that Heisenberg’s formulation should also have some-
thing equivalent to ψ. However, since in the Heisenberg representation, it is the
dynamic variables which are time dependent, the ”state” should not be.

Thus in the Schroedinger representation, it is the state (ψ) which is dynamic,
and the operators which represent the dynamic attributes of the particle are not
time dependent. In the Heisenberg representation, it is the dynamic operators
which are time dependent while the state is not.

Let us look at a simple situation. Consider a free particle, with unit mass,
and Hamiltonian

H =
1

2
P 2 (14)

In the Heisenberg representation, the equations of motion are

∂tX = P (15)

∂tP = 0 (16)

with solution

X(t) = X(0) + P (0)t (17)

P (t) = P (0) (18)

Let us now assume that we have (somehow) determined that at t=0, or rather

in terms of X(0)andP (0) the Heisenberg state is ψ(x0) = Ne−
x
2
0

4∆2 . where N is
a normalisation constant. Then we have

∫

(ψ(x0)
∗ψ(x0)dx = 1 (19)

or
∫

N2e−
x
2
0

2∆ dx0 =
√
2πN2∆ (20)

or N = 1√√
2π∆

.

On the other hand the Schroedinger equation is

i∂tψ(t, x) = −1

2
∂2xψ(t, x) (21)
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While this is certainly solvable it is not trivial.
However, let us look at the Heisenberg representation again. The state ψ

obeys the equation

(iP (0) +
X(0)

2∆2
)ψ(x0) = 0 (22)

(∂x0
+

x0
2∆2

)ψ = 0 (23)

Writing P (0) and X(0) in terms of P (t) and X(T ) we get

P (0) = P (t) (24)

X(0) = X(t)− P (t)t (25)

and the state ψ(x0) becomes

iP (t) +
(X(t)− P (t)t)

2∆2
)ψ = 0 (26)

Using X(t) → xt, P (t) = −i∂xt
, we get

(∂xt
+

xt
2∆2 + it

)ψ(xt) = 0 (27)

or

ψ(t, xt) = Nte
− x

2

4∆2+2it (28)

with

N2
t =

√

4∆2

2π(4∆4 + t2)
(29)

This is precisely the solution of the Schroedinger equation, where we take xt → x
as can be seen by substituting it into the Schroedinger equation.

Ie, in this case solving the Heisenberg equation and then deriving the Schroedinger
solution is far easier than solving the Schroeding equation directly. This will
often be the case especially if the equations of motion are linear.

We see that the dynamic variables in the Schroedinger picture at time t are
the dynamic variables in the Heisenberg representation at time t. And the state
at time t is the initial state expressed in terms of these dynamic variables.

Formally, One can define a unitary operator U(t, t′) which obeys the equation

i
d

dt
U(t, t′) = HU(t, t′) (30)

U(t′, t′) = 1 (31)

Then the Schroedinger picture,

|ψ(t)〉 = U(t, t′) |ψ(t′)〉 (32)

4



or in the postition basis where ketψ =
∫
ψ(t, x) |x〉

ψ(t, x) =

∫

〈x|U(t, t′) |x′〉ψ(t′, x′)dx′ (33)

U(t, x, t′, x′) is often called the Green’s function for the Hamiltonian.
If the Hamiltonian is time independent, then we can formaly solve the equa-

tion by

U(t, t′) = e−i(t−t′)H (34)

where the exponential is defined via its taylor expansion

eS =

∞∑

0

Sn

n!
(35)

If H is explicitly time dependent however, this does not work One might
expect to do something like

Û(t, t′) = e
−i

∫
t

t′
H(t′′)dt′′

(36)

But if [H(t′), H(t′′)] is not equal to zero, this will not work i d
dt
(
∑

n

(−i
∫

t

t′
H(t′′)dt′′)n

n! )

is not equal to H(t)U because dH
dt

(t) does not in general commute with H(t′′) .
Consider the second term in that expansion

d

dt
(

∫ t

t′
H(t′′)dt′′)2 = (H(t)

∫ t

t′
H(t′′)dt′′ +

∫ t

t′
H(t′′)dt′′H(t). (37)

UnlessH(t) commutes with all H(t′′) for t′′ between t′ and t, this is not the same

as 2H(t)
∫ t

t′
H(t′′). One often sees the solution written as U = Te

−i
∫

t

t′
H(t′′)dt′′

which would seem to say that the solution is just what I hypothesised. But the
T stands for ”time ordered”, which means that in each term

∫ t

t′
H(t′′)n, the

H(t”) are reordered so that if t′′ > t̃′′ where t′′ is from one of those n terms
in the product, and t̃′′ is from another, then the product of the H’s are taken
such that H(t′′) is to the left of H(t̃′′ in that product. If the commutator of
H(t′′) and H(t̃′′) are all small, (and the commutators of those commutators are
evensmaller, etc) one can approximate the unitary operator by means of the
Magnus expansion.

If we have

∂tU(t, t′) = A(t)U(t, t′) (38)

with U(t′, t′) = I, then Magnus showed that one can write the solution in terms
of a sequence of operators. In particular write

U = eΩ(t,t′) (39)
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Then one has

Ω =
∑

n

Ωn (40)

Ω0 =

∫ t

t′
A(t1)dt

′
1

Ω1 =
1

2

∫ t

t′

∫ t̃1

t′
[A(t1), A(t2)]dt2dt1

Ω2 = 1/6

∫ t ∫ t1

t′

∫ t2

t′
([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]dt3dt2dt1

...

For our situation, A = −iH(t), and each Ωn is anti-Hermitian (Ω†
n = −Ωn.

Thus, if one truncates the Magnus expansion at some value of n, then the
operator U is Unitary. U † = U−1.

Each term Ωn has more commutators in it than lower values of n. In partic-

ular Ωn =
∑

[A, [A, ....[A,A]]...]
︷︸︸︷
n where each A has a different time argument

. If those commutators are all small, then this is an expansion which converges
rapidly. If they are not, then this may still be an assymptotic expansion. Thus
of the great advantage of the Magnus expansion is that if one truncates the
series in Ω at some order, the operator U is still a Unitary operator. Most other
expansions do not share this feature. Most truncated series does not give a
unitary operator, and the evolution is non-unitary to that order.
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