
Physics 501-22
Entanglement

Quantum Mechanics is a probabilistic theory. It gives probabilities of out-
comes not values of outcomes. As with any probabilistic theory, it also contains
the concept of correlation. If one has two separate things, two separate systems,
then there is the concept of statistical independence and statistical correlation.
In a non-statistical theory, things are always correlated. Given the intial con-
ditions on the two system, the final results are deterministic and definite, and
thus are always correlated. Two attributes A1 and B2 on systems 1 and 2, are
correlated if {a1}, and {b2} being the set of possible values of A1 and B2, and
P (a1) and P (a2) are the probability of realising the specific values of a1 and b2
and P (a1, b2) is the probability of realising both a1, and b2, then

P (a1, b2) 6= P (a1)P (b2) (1)

for some value of a1 and b2. Ie, the probabliblity of a both is not simply equal
to the probability of one times the probability of the other. If the equality holds
for all a1 and b2 then the two are statistically independent and are said not to
be correlated.

This concept applies to a quantum system as well. Two systems can be
correlated if the probabilities of two outcomes are not the product of the prob-
abilities of the individual outcomes. In quantum mechanics, if the state of the
whole system is such that the probabilities of any two attributes, one from each
system, obeys that inequality, then the states are called entangled.

Define the expectation value of some attribute C of some system. Then the
expectation value of that attribute is equal to the probability of it having some
value times that value, summed over all possible values for that attribute.

expectationvalue(c) =
∑

c

cP (c) (2)

It is also called the average value of c. In quantum mechanics, the attribute C
is represented by some Hermitian operators C. If |ψ〉 is the quantum state of
the system, then the expectation value of C is given by

< C >= 〈ψ|C |ψ〉 (3)

the possible values that the attribute C could take are the eigenvales of the
operator C and the probability that that value is realised in the state ψ is
P (c) = | 〈ψ| |c〉 |2. where |c〉 is a unit vector which obeys

C |c〉 = c |c〉 (4)

Thus on at least one level, entanglement is nothing mysterious, because
correlations are a common feature of any probabilistic system. On the other
hand, there are strange features of quantum system, which differentiate them
from classical probabilistic system. This was first pointed out by Einstein,
Podolsky and Rosen, amplified by Schroedinger, and sharped by Bell.
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There are strange features of the quantum correlation, not shared by classical
correlations. Consider a system which has two subsystems, with attributes A∞

and B∈ and Ã1 and B̃2 of the two subsystems, which have operators A1 , B̃2

and B2 associated with those attributes. Let as assume that the possible values
for these attributes are all ±1 (for example, the attributes attributes A1 could
be whether or not the position was to the right or left of statue of John A
Macdonald in Ottawa). Now consider a probability distribution such that the
expectation value of all the attributes are 0 (for example that the probability
of being to the left or right are equal.) but correlated (the expectation value of
the a1b1 is not zero.)

Let us look at

c = (a1b2 + a1b̃2 + ã1b2 − ã1b̃2) = (a1(b1 + b2) + ã1(b2 − b̃2) (5)

Since b2 + b̃2 has value ±2 when b2 − b̃2 have value 0 and vice versa, Then c
have value ± 2 or 0 and mean value of c2 lies between 0 and 4.

Given quantum system on the other hand, we have

C = (A1B2 +A1B̃2 + Ã1B2 − Ã2B2) (6)

and

C2 = A2

1
B2

2
+A2

1
B̃2

2
+ Ã2

1
B2

2
+ Ã2

1
B̃2

2
+ [A1, Ã1][B2, B̃2] (7)

Since each of the operators has eigenvalues of ±1 only, the square is the identity
matrix. we have

C2 = 4 + [A1, Ã1][B2, B̃2] (8)

If the commutator of the As and Bs are zero, then we get exactly the same
limits as in the classical case. However, if the commutators are imaginary and
opposite (so that i times the commutators are Hermitian), the limits on C2 can
be larger than 4. The simplest situation is to use the Pauli sigma operators.
Choosing A1 = σ̃x1 and Ã1 = σy1 and B2 = σy2 andB̃2 = σx2, we get

C2 = 4 + 4σz1σz2 (9)

To Maximize the expectation value of C2 one needs a either the +1 eigenstate
of σz1 and of σz2 or the -1 eigenstate of both, or any linear combination of them.
Looking at C however, we find that the expectation value of < C > for either
of these is 0 (ie, an equal combination of the ±2

√
2 eigenstates of C) However

both vectors 1√
2
(|++〉 ± |−−〉) are eigenstates of C with eigenvalues of ±2

√
2

The key point is that B2 + B̃2 does not have eigenstates of (0,± 2) but rather
has eigenstates

√
2. Furthermore, the two operators B2 ± B̃2 do not commute

and thus have no joint eigenstates. The values do not anticorrelate.
Ie, while the quantum correlations are similar tothe classical correlations,

the quantum correlations, in this case are stronger than the classical correlation.
Quantum correlations differ from classical correlations.
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Note that for a quantum system, if A1 and B2 are operators on the two
systems, if |ψ〉 = |ψ1〉 |ψ2〉, then

< A1B1 >= 〈ψ2| 〈ψ1|A1B2 |ψ1〉 |ψ2〉 = 〈ψ1|A1 |ψ2〉 〈ψ2|B2 |ψ2〉 =< A1 >< B2 > (10)

Ie, the correlation function is zero for all operators A1, B2.These states are not
entangled – there are no non-zero correlations between the two substates.

Note that whether or not a system is entangled can depend on how one
divides the system into two parts. Let us consider a system made up on two
harmonic oscillators, with dynamic variables X1, P1, X2, P2, and consider the
Hamiltonian

H =
1

2
(P 2

1
+ P 2

2
+X2

1
+X2

2
+ 2δ(t)X1X2) (11)

The initial ground state of this system can be written in two different ways.
Write new dynamic variable

Y1 = (X1 +X2)/
√
2 (12)

Y2 = (X1 −X2)/
√
2) (13)

Π1 = (P2 + P2)/
√
2 (14)

Π2 = (P1 − P2)/sqrt2 (15)

These obey [Y1,Π1] = [Y2, P i2] = i with all other commutators of 0. The
Hamiltonian then is

H =
1

2
(Π2

1
+Π2

2
+ (1 + δ(t))Y 2

1
+ (1− delta(t))Y 2

2
) (16)

The initial ( t¡0) ground state is

ψ(t) = e−ite−
y
2
1
+y

2
2

2 = e−ite−
x
2
1
+x

2
2

2 (17)

Just after t=0, we have

ψ(t) = e−
2y2

1
+0y2

2
2 = e

−x
2
1
+x

2
2
+2x1x2

4 (18)

= e−x2
1e−x2

2e−x1x2 (19)

While the first two terms are clearly a product of a function of x1 times a
function of x2, the last term, equally clearly, is not. This state, while being a
product of states for y1 and y2, it is not a product state for x1 and x2. This is
a highly entangled state.

Ie, if we split the system into x1 and x2 the system’s state after the inter-
action is an entangled state while if we spit it into the symmetric and antisym-
metric parts, it is a product state and is not entangled. So, never let anyone
talk about ”an entangled state” without also telling you how the system is being
split into a bipartite system.
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Density Matrix

A bi-partite system, with some entangled state between the two, can be
written as

|ψ〉 =
∑

n

qn |φ1n〉 |φ2n〉 (20)

where

∑

nm

q∗nqm 〈φ1n| |φ1m〉 〈φ2,n| |φ2m〉 = 1 (21)

so that the wave function is normalised.
Consider the operator operating only on the first Hilbert space, the Hilbert

space of the first system

ρ1 =
∑

mn

[q∗mqn 〈φ2m| |φ2n〉] |φ1n〉 〈φ1m| (22)

which is Hermitian. It is called a Density Matrix for the system 1 corresponding
to the state |ψ〉 for the whole system.

Since the density matrix ρ1 is Hermitian we can choose |φ1n〉 to be a complete
orthonormal set of eigenvectors for ρ1. Then

ρ1 =
∑

n

λn |φ1n〉 〈φ1n| (23)

with λn = |qn|2 〈φ2n| |φ2n〉 and 〈φ2n| |φ2m〉 = 0 for n 6= m. Ie, if we choose the
set of orthonormal vectors which diagonalize ρ1, then the set of vectors that
|φ2n〉 must also be an orthonoral set, which diagonalize ρ2. These are called the
Schmidt decomposition of the pure state |ψ〉. The non-sero eigenvalues for ρ2
are identical to those for ρ1, and the sum of the eigenvalues must equal 1. Thus
the eigenvalues of ρ1 or ρ2 can be interpreted as probabilities.

Decoherence
Given a subsystem of a larger system, any interaction between the subsystem

and the rest of the total system will, in general create and entangled state
between the two. Thus the subsystem instead of being decribed by a pure
quantum state, will instead be described by a density matrix, if one ignores
the rest of the system. This process of reducing a pure state to a mixed state,
a state which is a sum of probabilities over pure states, is called decoherence.
Decoherence is thus very easy to produce. Any kind of interaction between the
system of interest and anything else, will produce decoherence.

Measurement
.
What is a mesurement? This ultimately is one of the most contentious

questions in quantum theory. But there is a simpler question. In carrying our
a measurement one almost always inserts another system between the system
one is interested in and oneself– a voltmeter, a microscope, ... One sets up
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an interaction between the system one is interested in and the apparatus, such
that making a measurement on the instrument gives on information about the
system. Ie, this means that the apparatus starts on in some state, and after
the interaction there is a correlation between the state of the apparatus and the
state of the system one is interested in.

There is a very simple model one can use to study measuremnts, modeled
on say an analog voltmeter. The voltmeter has a pointer and a dial. One one
hooks it up to the system one is interested in, the pointer on the dial goes from
some fiducial value of 0 to the voltage of interest. Lets choose our apparatus
therefor to have dynamic degree of freedom which is the position of the pointer.
Let us take this to Q. Assume that this has a conjugate momentum PQ. How
let us take the Hamiltonian of this apparatus to be 0. Ie, in the absense of
interaction with the apparatus, it does not change.

Let us now hook up, for a time, the apparatus to the system. Lets say that
we are measuring the position X of some particle. Lets take the Hamiltonian
to be

HI = δ(t)PQX (24)

The Heisenberg equation of motion for the apparatus is now

i∂tQ = [Q,HI ] = iδ(t)X (25)

∂tP = 0 (26)

which gives

Q = Q0 +X (27)

P = P0 (28)

Ie, the interaction has displaced the pointer by a distance X. By measuring the
position of the pointer after the interaction, one can determine what X was at
the time of the measurement. Futhermore, one can also model the accuracy of
the measuring apparatus. Let us assume that the measuring apparatus is set
up so that the position of the pointer has a position with mean value of 0, and
an uncertainty of ∆. Thus, initially we would have

< Q >=< Q0 >= 0 (29)

< Q2 >= ∆2 (30)

After the interaction, we would have

< Q >=< Q0 > + < X > (31)

< Q2 > − < Q >2=< Q2

0
> + < X2)− < X >2 + < Q0X > (32)

If we assume that there is no correlation between Q0 an X, the last term would
be zero, and the variance in the measurmeent would equal the variance of the
intial position of the pointer plus the intrinsic variance in X in its state just
before the measurmemt.
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