
Physics 501-22
Density Matrix

Quantum Mechnics is a probabilistic theory. It is a theory which does not
tell what the future is, given the past. Instead it gives probabilities for varios
futures given the past. For a given state |ψ〉 (given by having knowledge of some
feature of the system in the past, in the usual formulation, and a given attribute
of a system A, the possible future values for that attribute are given by the
eigenvalues of the operator A associated with the attribute A The probability of
finding that the system has some value for that attribute, one of the eigenvalues,
is given by

P(a) = |〈a||ψ〉|2 (1)

where |a〉 is the normalised eigenvector associated with the eigenvalue a and
P(a) is the probability. (If there are many eigenvectors with the same eigenvalue
A you need to sum over the a complete orthonormal set of those eigenvectors
for a).

One can imagine that one set up one’s system so that, in addition to the
probabilities that arise from Quantum mechanics, one also adds in classical
probabilities. Lets say that one, instead of choosing one initial state |ψ〉 one
instead chooses a set of them |ψn〉. One now correlates the state with some
outside classically random event, such that the the nth value of the random
generator has probability pn. One now correlates that output with the nth
state |ψn〉. If one wants to calculate the average value of some operator A, one
would calculate the average for the nth state|ψn〉, and then average over the
probabilities

〈A〉 =
∑

n

pn〈ψn|A|ψn〉 (2)

Note that this is not a state.
Given an operators, B, one can define a operation on that operators called

the trace. Consider a complete orthonormal set of states |φn〉 define the trace
as

TrB =
∑

n

〈ψn|B|ψn〉 (3)

The trace has a number of features. In particular

TrBC = Tr(CB) (4)

If U is a unitary matrix, then

Tr(U †BU) = Tr(BUU †) = Tr(B) (5)

Since the operator

U =
∑

n

|φn〉 ˜〈φn| (6)
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for two abitrary complete orthonormal sets,is a unitary matrix

UU † =
∑

nm

|φn〉( ˜〈φn| ˜|φm〉) ˜〈φm| (7)

=
∑

nm

|φn〉δnm ˜〈φs| =
∑

n

|φn〉 ˜〈φn| = I (8)

. Thus Tr(UBU †) = Tr(BU †U) = tr(B) Since UBU † in the ˜|φn〉 basis, the
trace is basis independent.

Furthrmore

Tr(|µ〉〈ν|) =
∑

n

〈φn||µ〉〈χ||φn〉 =
∑

n

〈χ||φn〉〈φn||µ〉 = 〈χ|I|µ〉 = 〈χ||µ〉 (9)

( as can be seen by expanding |µ〉 and |χ〉 in the orthnormal basis of |φn〉
We can write ρ as a density matrix

ρ =
∑

n

pn|ψn〉〈ψn| (10)

Note that |ψn〉 need not be a complete set, nor need it be an orthogonal set.
But |ψn〉 are normalised. Then Trρ =

∑
n
pn = 1

Now consider a two part system, and consider |ψ〉 as a state in that total
system. If we have |φn〉 to be a basis in the first of those two parts, and ||φ〉

m
〉

to be an orthonormal basis in the second, we can write the state |ψ〉 in terms

of the orthonoral basis ˜|φn〉 ˆ|φm〉

|ψ〉 = ( ˜〈φn| ˆ〈φm||ψ〉) ˜|φn〉 ˆ|φm〉 (11)

and the density matrix

ρT = |ψ〉〈ψ| =
∑

mnrs

( ˜〈φn| ˆ〈φm||ψ〉) ˜|φn〉 ˆ|φm〉( ˜〈φr| ˆ〈φs||ψ〉) ∗ ˜〈φr| ˆ〈φs| (12)

The partial trace of ρ is to take the inner product of the state ψ with a
vector which lives only in the first (second) space If the state can be written as

|ψ〉 = ˜|φ〉|φ〉, then one one can define the partial product

˜〈ζ||ψ〉 = ( ˜〈ζ| ˜|φ〉)|φ〉 (13)

Ie, as a map from the Hilbert space for the full system to the Hilbert space of
the first subsystem. Since any state can be written as a sum of products, by
defining this partial inner product to be linear, one can define the partial inner
product for an arbitrary state of the system. One can use this to define the
partial trace

Tr2ρ =
∑

n

˜〈φn|ρ ˜|φn〉 (14)
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where again ˜|φn〉 is a complete orthonormal set.
Now, The partial trace of a Hermitian density matrix is Hermitian. It thus

has a complete orthonormal set of eigenvectors. Et us assume that |φ〉
n
has

been chosen to be those eigenvectors.Then

Tr2ρ|φ〉n = λn|φn〉 (15)

and thus Tr2ρ =
∑

n
λn|φn〉〈φn|. But,

|ψ〉 =
∑

n

µn|ψ〉n ˜|χn〉 (16)

and
∑

n

|ψ〉〈ψ| =
∑

nm

µ∗
nνm

˜〈χn| ˜|χm〉|φn〉〈φm| (17)

But since the |φn〉 are eigenstates of the reduced density matrix, the χ̃n must
be orthonormal as well. Thus Tr1|ψ〉〈ψ| must have the χn as eigenvectors.

Tr1|ψ〉〈ψ| = |µn|2|χ〉n〈χ|n (18)

Ie, the reduced density matrices for system 1 and 2 must have the same set of
eigenvalues. The number of such non-zero eigenvalues is called the rank of the
operator.

Note that this is only true of the density matrix of the whole system is a
pure state– ie, is a single state |ψ〉. If the density matrix of the whole system
is a mixed state (has a density matrix or rank greater than 1), then the above
Schmidt decomposition does not imply that the eigenvalues of the reduced den-
sity matrices have the same eigenvalues. A trivial example is

ρ = 1/2( ˜|χ〉|ψ〉
1
〈ψ|

1

˜〈χ|+ ˜|χ〉|ψ〉
2
〈ψ|

2

˜〈χ|) (19)

Then the reduced density matrix under the partial trace over 2 is

ρ1 = 1/2(|ψ〉
1
〈ψ|

1
+ |ψ〉

2
〈ψ|

2
) (20)

with two eigenvalues 1

2
while the reduced density matrix under partial trace

over the first system is

ρ2 = ˜|χ〉 ˜〈χ| (21)

with one eigenvalue of 1, and one eigenvector with non-zero eigenvalue |χ〉.
Decoherence

Given a system with two parts, if one starts with a system which has a pure
state, ψ as the intial (Schroedinger) state, then, on making a measurement on
system 1, one can get interference. For example, if one starts with the state

|ψ〉 = 0̃(
1√
2
(|−1〉+ |1〉) (22)
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then a measurement of the operator

|1〉〈1| (23)

will give a 50% chance of getting a 1, and 50% chance of getting 0. However, if
you measure the operator

(
1√
2
(|−1〉+ |1〉)( 1√

2
(〈−1|+ 〈1|) (24)

one will always get a value of 1.
One the other hand, if one has the state

|ψ〉 = 1√
2
( ˜|−〉1

2
|−1〉

1
+ ˜|1〉

2
|1〉

1
) (25)

One will always get 50% no matter which of the operators one measures. The
interference has disappeared.

One could make this entangled state by interacting the two systems. If σi
are the sigma matrices for the first system and Σi are those for the second. We
could start in the state |ψ0〉 = |−1〉

2
|−1〉

1
. Now we interact with this with the

Unitary operator on the first system which is equal to

US = I2
1√
2
(σ3 + σ1) (26)

to get

|ψ〉 = U |ψ0〉 (27)

We now make a measurement with the second system acting as the measuring
apparatus.

UM =
1

2
(
1√
2
(Σ3 +Σ1)(1 + σ3) + I2(1− sigma3) (28)

with

UMUS |ψ0〉 =
1√
2
(|−1〉|−1〉+ |1〉|1〉) (29)

The reduced density matrix for the first system is just thei 1
2
the Identity Matrix

and the expectation value off all of the σ1 are 0. There is no interference.
This state is an entangeled state, and entanglement destroys coherence for

any subsystem.
One of the prototypical systems to which this is applied is the two slit inter-

ference experiment, or the interferometer.
If one sends a photon through an equal arm interferometer, then the photon

will (depending on the exact design of the half silvered mirror one uses) will come
back out of the same port it was sent into. One the other hand, if one places
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a non-destructive photon detector into one of the paths of the interferometer,
which measures for certain which arm of the interferometer the particle went
down, then the interference is destroyed, and the photon will exit out of either
port with equal probability.

Now, let us set up this experiment with a slight twist. We put the photon
detector into one of the paths of the interferometer. We measure which port the
photon came out of and write it down in a book together with the experiment
number. However we now place into storage the photon detector and do not
determine which state it is in. We also make sure that this detector does not
interact with anything. 20 years after the experiment was finished, the results
recorded in the book, we now haul the detectors for each of the experiments out
of storage. If we measure whether or not the detector is in the ”detected” state,
we will find that there is no correlation between that and the port out of which
the photon exited the detector.

However, we now carry out a different experiment. We instead measure the
state

1

2
( ˜|1〉+ ˜|0〉)( ˜〈1|+ ˜〈0|) (30)

This is an operator with the two eigenvectors 1√
2
( ˜|1〉+ ˜|0〉)) and 1√

2
( ˜|1〉− ˜|0〉) with

eigenvalues of 1 and 0 We now find that the outcomes of this measurement are
prefectly correlated with the outcomes of the experiment done 20 years earlier.
If the measurement now has outcome 1, then the original photon came out of
same port it went into, while if the outcome is 0, the original photon came out
of the the other port of the interferometer. (Or vice versa, with the port being
perfectly correlated with the meaurement). What seemed to be decoherence,
has still retained at least some vestage of the correlation that was in the original
state after the ”measurement” type interaction with the photon.

The interference pattern is hidden, but is correlated with the value of the
(till 20 years later) unmeasured measuring apparatus.

Determining the value of that measuring apparatus reveals the interference
pattern.

Altrnatively, in the light of the next part, the time conditions, if one places
on the 20-year determination of the vlaue of Σ2 the condition that one demands
that the value is 1, then one sees an interference pattern in the data collected
20 years earlier.
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