
Physics 501-22
Cosmology

We will now look at the Genral Relativity which gives the solution, but the main result
is that the universe expands as a function of time. In particular the distance between two
nearby objects increases, not because they are moving but because new space is created
beteen the objects. If we use x to label the position of ojects at rest, then the distance
function between nearby objects is given by (Pythagoras’s theorem)

ds2space = a(t)2(dx2 + dy2 + dz2) = a2(d~x · d~x). (1)

Ie, the distance between nearby objects increases as a(t). The special relativitistic spacetime
distance is given by

ds2 = dt2 − ds2space = dt2 − a(t)2(d~x · d~x) (2)

The equation of motion of a scalar field is

1

a3
∂ta

3∂tφ− 1

a2
∇2φ = 0 (3)

which can be derived from a Lagrangian

L =
1

2

∫

a3(∂tφ
2 − 1

a(t)2
(∇φ · ∇φ))d3x (4)

a(t)3d3x is the volume element of space, given that the spatial distances increase as a(t)dx.
This is like rdθ where a little change in the coordinate θ corresponds to an actual physical
distance of rdθ.

The conjugate momentum to φ(t, x) is o

δL
δ∂tφ(t, x)

= π (5)

or

π = a3∂tφ (6)

and the Hamiltonian is

H =
∫

π∂tφd
3x− L =

1

2
(
π2

a3
+ a(t)|∇φ|2) (7)

The Hamiltonian action is

S =
∫

π∂tφd
3x−H =

∫

[

π∂tφ− 1

2

∫

(
π2

a(t)3
+ a(t)∇φ · ∇φ

]

d3x (8)

The equations of motion are

∂tφ =
π

a3
(9)

∂tπ = a∇2φ (10)
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We can write the spatial part of this in terms of exponentials of spatial coordinates eik·x√
(2π)3

φk(t, x) =
1

√
2π

3φk(t)
ei(k·x)
√

(2π)3
d3x (11)

(Note that in some places k will represent a three dimensional vector, while in others it will
be length of that vector. I hope this is clear from context) and similarly for πk, with the time
dependent equations

∂tφk =
πk

a3
(12)

∂tπk = ak2φk(t) (13)

which come from a Hamilatonian action

Hk =
1
2
(π2

k

a3 + ak2φ2
k)

(14)

(Just to be clear, we note that φk and πk are actually complex. One should actually
write the Hamiltonian in terms of the real and imaginary parts of φk, πk, or use the modes
cos(k · x), sin(k · x.This complicates the notation, hiding the essentials of the procedure, so,
at the expense of the possibility of confusion when you think of this more deeply, I will be
sloppy).

Thus we have the action for each ~k,

Sk =
∫

πk(∂tφk)−
1

2
(
π2
k

a3
+ ak2φ2

k)d
3kdt (15)

=
∫

πk(∂tφk)−
1

2

k

a
(
π2

ka2
+ ka2φ2

k)dtd
3k (16)

Comparing this for each k to the expression for the adiabatic expansion we find that

τk =
∫ k

a
dt (17)

Ωk = ka2 (18)

We thus have

π̂k =
πk√
ka

− ȧ

a

√
kaφk (19)

φ̂k = φk

√
ka (20)

where ˙= d
dτk

and

Ĥk =
1

2
(π̂2

k + φ̂2
k(1−

ä

a
)) (21)

Now this τk depends on k and scales as k for large k. so ä/a will scale as 1
k2

and becomes
very small for large k. On the other hand for small k this will be very large, and if ä > 0,
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1 − ä/a will go negative. In that case the solution to the equations of motion will grow or
decrease exponentially, with faster growth for smaller k in terms of τk.

The other important relation is between theˆmomentum and configurtion and the original.

π̂k = πk/(
√
ka) + ȧ

φk√
k

(22)

φ̂k =
√
kaφk (23)

Let us assume that we are looking at large enough k that that the k dependence in Ĥ
can be neglected. Then the solution for φ̂, π̂ is

φ̂k = φ̂k(0) cos(kτ̂) + π̂k(0) sin(kτ̂) (24)

π̂k = π̂k(0) cos(kτ̂) + φ̂k(0) sin(kτ̂) (25)

From the equation dτk = kdt/a(t), we must have τk be proportional to k. If a(t(τk)) is
exponential, then ä/a is constant, and one can find the solution. In that case

dτk = k
dt

a(t)
(26)

dt =
1

k
a(τk)dτk = αeβτkdτk = d(

α

βk
eβτk) (27)

for both a(t) = αeβτk and t to be independent of k, we must have βk be a constant. and thus
τk to be proportional to k. which means that τk = ln(t)β or a(t) ∝ t.

For small k, the Lagrangian equations of motion are

∂2
t φk + 3

∂ta(t)

a(t)
∂tφk +

k2

a(t)2
φk (28)

If k2 << 3/2∂ta(t)
2, the second term will dominate over the first, and φk will have two

solutions, one constant, and the other proprotional to a(t)3/2.
Quantization:

To quantize the field, we need to decide what the positive norm modes are that we are
going to use for the definition of quanta or particles for the system. The obvious one is to
use Hamiltonian diagonalization for each of the modes. However in general the Hamiltonian
diagonalisation at some time t does not evolve into Hamiltonian diagonalisation at a different
time. Ie, if we choose Hamiltonian diagonalisation as our definion, the evolution of the modes
will take the vacuum state at one time into a non-vacuum state at a different time. This is
not surprizing as the time dependence of the universe might be expected to create particles.
Teh question is how many?

The Hamiltonian diagonalisation is defined by

∂tφHk(t) → −iω(t)φHk(t) (29)

∂tπHk(t) → −iω(t)πHk(t) (30)

The equation of motion is

∂tφk(t) =
πk(t)

a(t)3
(31)

∂tπk(t) = −k2a(t)φk (32)
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This gives

ω(t)2 =
k2

a(t)2
(33)

N2 = i(φHK(t)
∗(−iω(t)a(t)3φHk(t))− (iω(t)a(t)3φHk(t)

∗φHk(t)) (34)

= |φk(t)|22ω(t)a(t)3 = |φk(t)|22ka(t)2 (35)

or, for N to be 1 (unit norm)

φHk(t) =
1

a(t)
√
2k

(36)

πHk(t) = a(t)3(−iω(t)φk(t)) = −i
√

k/2a(t) (37)

However, Let us choose the mode to be the Hamiltonian diagonalization moded at time
t. The evolution of the mode is given by the evolution equaitons and we have

φk(t+ δ)) = φHk(t) +
πHk(t)

a3(t)
δ +O(δ2) (38)

=
1

a(t)
√
2k

− i

√

k/2

a(t)2
δ +O(δ2) (39)

πk(t+ δ) = πHk(t)−
k2

a(t)
φHk(t)δ (40)

= −i
√

k/2a(t)− k2 1

a(t)3
√
2k

δ (41)

while the Hamiltonian diagonalisation gives

φHk(t+ δ) = (1−Hδ)
1

a(t)
√
2k

(42)

πH,k(t+ δ) = (1 +Hδ)( − ia(t)
√

k/2) (43)

where H = ∂ta(t)
a(t)

is called the Hubble constant.
We now take the inner product of this evolution with the complex conjucate of the

Hamiltonian diagonalization at t + δ to find out how much negative norm (with respect
to the Hamiltonian diagonalisation) that the evolution has produced.

β = < φHk(t+ δ)∗, φk(t+ δ) > (44)

= i (φHk(t+ δ)πk(t+ δ)− πHk(t+ δ)φk(t+ δ)) (45)

= 2Hδ (46)

We can define two sets of annihilation operators, AHk =< φHk,Φ >, which uses the
Hamiltonian diagonalisation modes at each time t. Since the diagonalisation modes do not
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obey the equations of motion, AH,k depend on time. The others are Ak =< φk,Φ >. Since
φk(t + δ) obey the equations of motion in δ, the associated annihilation operators is time
independent. Taking the intial conditions that at t, φk(t) = φ)Hk(t) and πk(t) = πHk(t),
and

φk(t+ δ) = φHk(t)πk(t+ δ) = φHk(t) (47)

The annihilation operator

AHk(t+ δ) =< φHk(t+ δ), Ak(t+ δ)φk(t, δ)(t+ δ) + A†
k(t+ δ)φ∗

k(t+ δ) + βA†
k (48)

=< φk(t+ δ), φHk(t+ δ) > + < φ∗
k(t+ δ), φHk(t+ δ) > A†

Hk > (49)

Let us assume that at time t, we have the vaccum state with respect to Ak(t) which is just
the vacuum state with respect to AHk(t). But in the Heisenberg representation, the state is
a constant in time, so the state of the system satisfies Ak(t + δ) |0〉 = AHk(t) |0〉 = 0. The
number of Hamiltonian diagonalisation particles is NH(t+ δ) = A†

Hk(t+ δ)AHk(t+ δ) and

〈0| (alpha∗A†
Hk(t) + beta∗AkH)(αAHk(t) + βA†

Hk(t)) |0〉 (50)

= ‖β|2 〈0|AHk(t)A
†
Hk(t) |0〉 (51)

= |β|2 = H2δ2 (52)

The effective Hamiltonian for each mode is

Hk =
1

2
(
1

a3
π2
k + k2aφ2

k) (53)

Let us make the assymptotic transformation to theˆvariables and Hamiltonian, and time τ

Ĥ~k =
1

2
(π̂2

~k
+ (1− ∂2

τk
a(τk)

a(τk)
)φ̂2

~k
) (54)

where

τk =
∫ k

a(t)
dt (55)

a(τk) = a(t(τk)) (56)

φ̂~k(t) =
√
ka(τk)φ~k (57)

π̂~k =
1√

ka(τk)
π~k +

ȧ

a
φ̂~k (58)

Ie, from the previous notes Ω = ka2 and

Hk =
1

2
(π̂2

k + (1−
∂τ2

k

a(τk)

a(τk)
φ2
k (59)

Using the Hamiltonian diagonalization, we have a2 → (1− ∂2
τk

a(τk)

a(τk)
) and

2H → 2
∂τk

√

(1− ∂2
τk

a(τk)

a(τk)
√

(1− ∂2
τk

a(τk)

a(τk)

=
∂τk

∂2
τk

a(τk)

a(τk)

(1− ∂2
τk

a(τk)

a(τk)
)

(60)
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which is β.
Now τk is proportional to k, and thus β will be proportional to 1

k3
, and β2 will be propor-

tional to 1
k6
. Integrating over k2dk, for large k the upper limit in the particle creation rate

ntegral will fall off 1
K3 which goes raplidly to zero. Ie, the number of particles created will

be finite.
Of course Ĥ is not the ”real” Hamiltonian (although surely any cannonical transformation

has a valid a claim to reality as any other), or the real energy of the system.
This whole argument, which was given by L Parker (joined later by S Fulling) in the late

1960’s and early 1970’s raises the troublesome question– what does one mean by particles in
quantum field theory in General Relativity?

It is a problem which is still troublesome even now, 50 years later.
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