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We examine the assertion that the "reduction of the wave packet, " implicit in the quantum theory of
measurement introduces into the foundations of quantum physics a time-asymmetric element, which in
turn leads to irreversibility. We argue that this time asymmetry is actually related to the manner in which
statistical ensembles are constructed. If we construct an ensemble time symmetrically by using both initial
and final states of the system to delimit the sample, then the resulting probability distribution turns out to
be time symmetric as well. The conventional expressions for prediction as well as those for "retrodiction"
may be recovered from the time-symmetric expressions formally by separating the 6nal (or the initial)
selection procedure from the measurements under consideration by sequences of "coherence destroying"
manipulations. We can proceed from this situation, which resembles prediction, to true prediction (which
does not involve any postselection) by adding to the time-symmetric theory a postulate which asserts that
ensembles with unambiguous probability distributions may be constructed on the basis of preselection only.
If, as we believe, the validity of this postulate and the falsity of its time reverse result from the macro-
scopic irreversibility of our universe as a whole, then the basic laws of quantum physics, including those
referring to measurements, are as completely time symmetric as the laws of classical physics. As a by-product
of our analysis, we also find that during the time interval between two noncommuting observations, we may
assign to a system the quantum state corresponding to the observation that follows with as much justification
as we assign, ordinarily, the state corresponding to the preceding measurement.

I. INTRODUCTION either the Schrodinger or the Heisenberg equations,
are time symmetric as are their classical counterparts,
Hamilton's equations of motion. It has been suggested,
though, that asymmetry in the direction of time, and
even thermodynamic irreversibility, enters into quan-
tum theory through the theory of measurement. ' 4 Any
measurement performed on a quantum system changes
its state discontinuously and in a manner not to be
described by the Schrodinger or Heisenberg equations
of the isolated system. The performance of a measure-
ment leads to the "reduction of the wave packet. "That
is to say, if the result of the measurement is known,
then the quantum state of the system preceding the
measurement has been replaced by the eigenvector of
the observable that belongs to the eigenvalue recorded.
If the outcome of the measurement is not known, the
original state vector must now be replaced by a density
matrix diagonal with respect to the eigenvectors of the
observables measured, each diagonal element equaling
the absolute square of the corresponding component of
the original state vector. This density matrix is in-
equivalent to the original state vector in that all phase
relations between the components have been destroyed
by the act of measurement, though their norms survive
in the density matrix.

Quite aside from entropy considerations, the conven-
tional quantum theory of measurements is concerned
exclusively with the prediction of probabilities of
specific outcomes of future measurements on the basis
of the results of earlier observations. Indeed the
reduction of the wave packet has as its operational

~ NE of the perennially challenging problems of
theoretical physics is that of the "arrow of time. "

Everyday experience teaches us that the future is
qualitatively different from the past, that our practical
powers of prediction differ vastly from those of memory,
and that complex physical systems tend to develop in
the course of time in patterns distinct from those of
their antecedents. On the other hand, all the "micro-
scopic" laws of physics ever seriously propounded and
widely accepted are entirely symmetric with respect
to the direction of time; they are form-invariant with
respect to time reversal. ' '

The de facto absence of time symmetry in nature
enters the formal statement of the laws of nature
principally in two areas. One of these is thermo-
dynamics, particularly the second law of thermo-
dynamics; the latter proclaims that the entropy of a
thermally isolated system can only increase toward the
future. The other area is that of cosmogony; our
universe is expanding toward the future. Gold' has
suggested that these two asymmetric phenomena may
well be causally related to each other. A third time-
asymmetric effect, the preponderance of outgoing
radiation in nature over incoming radiation, may be
considered to be a special aspect of the second law.

In quantum theory the dynamical laws of motion,
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contents nothing but this probabilistic connection
between successive observations. '

In this paper we propose to examine the nature of the
time symmetry in the quantum theory of measurement.
Rather than delve into the measurement process itself,
which involves a specialized interaction between the
atomic system and a macroscopic device, ' ' we shall
simply accept the standard expressions for probabilities
of values furnished by the conventional theory. Whereas
the conventional theory deals with ensembles of
quantum systems that have been "preselected" on the
basis of some initial observation, we shall deduce from
it probability expressions that refer to ensembles that
have been selected from combinations of data favoring
neither past nor future. A theory that concerns itself
exclusively with such symmetrically selected ensembles
(the "time-symmetric theory") will contain only time-
symmetric expressions for the probabilities of observa-
tions. Logically this time-symmetric theory is contained
in the conventional theory but lacks one of the latter's
postulates. It will be developed in Sec. II.

In Sec. III we shall consider the case that prior to the
final selection some observations are performed that
completely destroy coherence of any state previously
existing; we shall 6nd that any earlier observations
obey probability laws that formally resemble the
conventional prediction formula. Likewise, if the initial
selection ("preselection") is followed by coherence
destroying measurements to be succeeded in turn by
some other observations, then these latter observations
obey the precise time-reQected expression of the
conventional prediction formula. This reQected relation-
ship might be called a "retrodiction" formula. Finally,
in Sec. IV we shall return to the true prediction and
"retrodiction" situations, i.e., to the consideration of
ensembles that have been either strictly preselected or
postselected. By adding to the time-symmetric theory
one postulate that appears to portray accurately the
conditions of our universe (and whose time-reflected
proposition does not hold), we are able to recover the
conventional asymmetric theory. We present an argu-
ment that this asymmetry represents the intrusion of
the irreversibility of macroscopic processes into the
microscopic domain, so that the totality of the basic
(microscopic) laws of nature emerges completely time
symmetric.

IL SEQUENCES OF OBSERVATIONS

We shall begin by considering systems which are
subjected to sequences of measurements, each of which
is individually "complete"; that is to say, that each
observation determines a quantum state of the system.
We make the conventional assumption about the
selection of ensembles of such systems (and of their
histories), which is to the effect that initially all systems
of the ensemble have yielded a specified nondegenerate
eigenvalue of an observable J; no other conditions are

~ F. P. Wignsr, Am. J. Phys. Bl, 6 (1963).

imposed. Under these circumstances the conventional
quantum theory of measurements states that, given
two successive measurements, the probability of a
particular outcome of the later observation depends on
the outcome of the earlier observation by being the
absolute square of the scalar product of the two state-
vectors belonging to the two respective eigenvalues.
We shall denote the observables to be measured by sym-
bols A~, A2, . Ak . all of whose eigenvalues are
nondegenerate; let the eigenvalues of AI, be denoted
by dl, . Only when necessary will distinct eigenvalues of
2 I, be denoted by Greek superscripts dI, ' &, dI, (j'&, ~ ~ ~ .
For the sake of simplicity we shall work io a Heisenberg
representation and assume further that all the AI, are
constants of the motion, not necessarily explicitly time-
independent. At any rate, between measurements both
the quantum states of our systems and the matrix
elements of our observables will be constant. If the
observables A~ are to be measured in any particular
sequence, which, in general, will not correspond to the
order of the subscripts . k, we shall indicate
the sequence of measurements by Latin superscripts,
thus: 3& .

Suppose now that we perform a sequence of observa-
tions, 2 ~, , A, & ', yielding the measurements
d, , d, ; then the probability that the next measure-
rnent 2&& will yield the eigenvalue dI, is

P(d(/d„, .
,d;)= t(d, id')i'= Tr(D,Ds), (2.1)

where the symbol D& denotes the idempotent operator

D~—=
t A&(A (, (2.2)

etc. If the measurement Al,
&' is to be followed by

A&'+' A~'+' A ' A,~, the probability that the
respective outcomes will be dI„d~, , d„, d„ is

P (dp, ,d„,d,/d„, ,d;)
= Tr(D,D„.DI,D,D„D„). (2.3)

Equations (2.1) and (2.3) hold irrespective of the out-
come of the measurements 3 ~, , A~, & ', and
irrespective of the outcome of the members of the
ensemble subsequent to the performance of the specified
observation(s). These expressions summarize the
quantitative content of the conventional theory of
measurement in quantum physics.

In passing let us briefly comment on the need in
quantum theory for constructing ensembles with well-
defined probability characteristics. If, in classical
mechanics, we had to deal with a system possessing a
phase space with a finite volume 0, then we could define
an a priori probability density on that phase space that
would be invariant with respect to canonical trans-
formations: the constant probability density 0 '. One
could then modify this density in conformity with any
restrictions imposed on the physical system, so as to
obtain contingency probabilities by purely deductive
methods. In other words, in a 6nite phase space one
might construct statistical mechanics employing a,
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where

Tr (AD; .D„BD„D;),
II(a,b)

. (2.4)

B(a,b) =P, Q„.Tr(AD, D„BD„D;),
B= ib)(&l (2 5)

This expression is manifestly time symmetric. If
we change the sequence of measurements to F,
A„~, , Al, ~, J, Eqs. (2.4), (2.5) remain unchanged.
In the exceptional case II(a,b) =0 the probability
p(d; ~ d„/a, b) is not de.fined.

standard ensemble as the point of departure. Because
in every realistic physical system the phase space has
an infinite volume, a transformation-invariant standard
probability density does not exist, and one is led into
constructing or conjecturing probability distributions
to fit various conditions imposed on the ensemble.

The situation in quantum theory is analogous. If
Hilbert space were finite-dimensional, then there
would be one density matrix distinguished as being
representation-invariant, the normalized multiple of
the unit matrix, from which all other density matrices
could be derived in response to various contingencies.
But again, for all realistic physical systems Hilbert
space is infinite-dimensional; hence, there is no
"standard ensemble" existing a priori and independ-
ently of any information about our physical system.
Thus, formally, we are forced to construct ensembles
of systems having certain restrictive properties.
Whether particular classes of restrictions lead to en-

sembles with unambiguous probability characteristics
cannot be decided aS.rmatively by formal analysis alone,
though internal inconsistencies might rule out some
conjectures. It is clear that the assumptions underlying
the conventional theory of quantum measurements are
logically admissible.

Next we shall consider a sequence of measurements

order. J and F are to be nondegenerate observables
like the others, and their eigenvalues are denoted
respectively by a and b. We shall now consider an
ensemble of systems whose initial and final states are
fixed to correspond to the particular eigenvalues a and b,

respectively; we ask for the probability that the out-
come of the intervening measurements are d, ,
d„, respectively. This probability, on the strength of
Eq. (2.3), is found to be

p(d;, .
,d„,b/a)

p(d;, ,d„/u, b) =
p(b/~)

The probabilities (2.4), (2.5) refer to a sample that
has been selected on the basis of required outcomes of
specified initial and final observations. This procedure
may appear artificial compared to the usual prescrip-
tion: "Prepare a system so that the value of J (at the
beginning) be a." But from a formal point of view we
may legitimately specify any selection that could be
performed with physical equipment, however complex.

As a matter of fact, in experimental physics selec-
tions are frequently based on combinations of initial
and final characteristics. Consider a beam of particles
that enters a cloud chamber or similar device controlled
by a master pulse. For the device to select an event as
belonging to a sample to be evaluated statistically, the
particle must enter the chamber and, prior to the onset
of any manipulation by magnetic fields, etc. , satisfy
certain requirements. But in order to be counted the
particle must also activate the circuits of counters
placed below the chamber; thus, we make the selection
on the basis of both the initial and the final state. In
some experiments even intermediate specifications may
be imposed in addition to initial and final conditions.
Thus, our formal treatment of initial and final states on
an equivalent footing is not inconsistent with experi-
mental procedures used in some investigations.

Equations (2.4), (2.5) may be thought of as providing
the foundation for a time-symmetric theory of measure-
ment. If we assumed the existence of ensembles with
well-defined probabilities only if selected on the basis
of both initial and final states, we should have a logically
closed theory, though one that would never permit
extrapolations to time intervals lying outside the
interstice between initial and final determination. Given
ensembles of any kind with well-defined probability
dispersions, we can always form subensembles obeying
additional restrictions and hence the time-symmetric
ensembles can be obtained from those of the conven-
tional theory by means of a deductive process. The
reverse does not hold, i.e., we cannot infer the character-
istics of broadly defined ensembles from those of more
narrowly defined ensembles.

On the basis of Eqs. (2.4), (2.5) we may calculate
probabilities involving only some of the measurements
between J and F, or we may calculate contingent
probabilities referring to partial samples in which the
outcomes of some of these measurements are fixed. In
particular we can calculate the contingent probability
of the outcome d~', given the outcome d,'. To obtain
this probability we must, of course, sum over all the
possible outcomes of the measurements preceding A;
and over all the possible outcomes following A ~',

keeping, as before, the outcomes of J and F fixed.
The result is

Q„Tr(D;DiD . D„BD„, D Di).
p(d, /d. ;; a, b) =

P. ~ Tr(D,DpD D BD„DDi).
Q „Tr(DiD D„BD„D )

Qi Q„Tr(D,Di D„B D Dp)
(2.6)
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As expected, the history preceding the measurement
A, drops out of our expression, but the coeKcient of the
squared matrix element of the conventional prediction
(2.1) is sensitive to 1E, and to di as well as to the sub-
sequent history. In other words, postselection will affect
the transition probability from d; to d&. That this is
unavoidable can be understood easily by the considera-
tion of the extreme case in which all observables
A, , A, F commute with each other as well as with
A ~. Depending on the selection of the eigenvalue b, the
transition probability in that case will be either 0 or 1.

It is obvious that the time-reAected relationship to
(2.6) also holds. That is to say, if we calculate the
contingent probability of d; knowing the outcome d& of
the observation immediately following, we shall obtain
an expression that is independent of the whole history
subsequent to the measurement A&', but which will de-
pend on the initial selection a as well as observations
scheduled prior to A,'.

Let us now consider incomplete measurements. The
result (2.4), (2.5) can be generalized immediately if we

drop the requirement that each intermediate measure-
ment be complete. According to von Neumann, ' an
incomplete observation projects the initial state not on
a particular direction but on a particular (rnulti-
dimensional) linear subspace of the Hilbert space, and
may be represented by an idempotent operator DI,.
The form of Eqs. (2.4), (2.5) will remain unchanged
under this reinterpretation of the symbols Dl, . It
should be noted, however, that Eq. (2.6) holds only if
A, is nondegenerate.

The replacement of the initial and final states by
mixtures is a bit more involved. If we form an ensemble
in which histories beginning with state

~
a) and ending

with state
~
b) form a fraction c,b of the whole

C~b+ 01 Q Q C~&b& 1
af Qf

(2.7)

There exists no simple expression that wouM depend on
the initial and final density matrices. The probabilities
(2.8) depend on the fractions of systems within the
ensemble passing from specified initial to specified final
states, not merely on the initial distribution pb c,b.

and the final distribution Q, c;b

III. ASYMPTOTIC PROCEDURES

Whereas we have been able to obtain time-symmetric
ensembles from those depending only on initial selec-
tion, the reverse procedure is impossible without an
additional postulate; that is to say, given a theory of
ensembles based on time-symmetric double-selection
procedures, we cannot obtain probabilities for ensembles
in which the selection is based only on initial (or only
on final) observations by deduction alone. In this sense,

then the probability p(d;, ,d„/{c})will be

P(4, A/{~})=ZZ ~.» p(d, ,~-/~', b') (2.g)
a' b'

Let us denote the idempotent operators to be con-
structed from the respective eigenvectors of the two
observables by D& and D2, respectively, each of these
symbols representing m such different operators. Then
the following expression constructed with any density
matrix M whatsoever is always a multiple of the unit
matrix I:

Qdy' Qd2' D1 D2 ~D2 Dl (1/21)1 ~ (3 2)

the time-symmetric theory of Sec. II is more restricted
than the conventional theory of measurements.

There is, however, a way to blunt the effects of either
pre- or postselection. The method to be described in
this section rests on the fact that in quantum theory
the type of interference that we call an observation
destroys the "coherence" of the state of a system,
producing a new situation that is connected with the
original situation only by stochastic laws. This stochastic
connection, or the lack of a tighter relationship, may be
expressed either in terms of the state vector, or its
replacement by a density matrix, or purely in terms of
probabilistic assertions. Whatever the mode of descrip-
tion, it is possible to sever different portions of the
history of a system from each other by the interposition
of certain types of measurements. By preceding the
final selection in the time-symmetric theory by such
"coherence destroying" manipulations, we may form-
ally recover the prediction formula (2.1); by scheduling
such procedures following the initial selection of a time-
symmetric ensemble, we may obtain the time-reverse
of Eq. (2.1), a "retrodiction" formula.

These possibilities are of considerable interest because
they present us with a relatively large class of possible
procedures all of which lead, asymptotically in most
cases, to substantially similar results. Though the
interpolation of coherence destroying manipulations,
say before the act of final selection within the framework
of the time-symmetric theory, does not relieve us of the
logical necessity of performing the act of final selection,
the particular choice of observable and of its numerical
value used for that final selection has no effect on the
probabilities of events preceding the coherence
destroying acts.

We shall first indicate particular sets of measurements
which destroy coherence more or less completely. Such
sets of two consecutive measurements may be con-
structed in closed form if the Hilbert space of a system
is finite dimensional, e.g., if the particles in a mono-
chromatic and well-collimated beam can differ only in
their states of polarization. Consider, in this case, two
observables A; and A; whose eigenvectors are related
to each other by a unitary matrix U and whose matrix
elements all have the same absolute square I/22, e being
the number of dimensions of the Hilbert space. One
possible unitary matrix with this property is, for
instance, the following:

U„,= [I/(22)'i2ge"2&, e, 1
——(27r/n)kl (3.1).
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As for the infinite-dimensional case, the situation is
insofar more involved as there exists no density matrix
which is precisely a multiple of the unit matrix. We
shall assume that the Hilbert space admits a complete
set of commuting operators, each having a continuous
range of eigenvalues from —~ to ~.We shall call these
operators x, and construct by the usual methods a set
of operators p, which satisfy standard canonical
commutation relations with each other and with the x,.
In a somewhat symbolic sense the unitary operators
leading from the improper joint eigenfunctions of the
x, to the improper joint eigenfunctions of the p, , i.e.,
the Fourier integral operators, possess matrix elements
all of the same magnitude as in the previous case. In
view of the fact that idempotent operators of the type
x(xo), etc. , are not really defined, we introduce idem-
potent operators X(x,h), defined as integral operators
whose kernel equals 1 if scan, and vanishes otherwise.
We cover the space of numerical values of the x, with a
denumerable set of domains 6 without overlap. Simi-
larly, we introduce idempotent operators P(p, E), where
the domains 8 cover the momentum space without
overlap. The expression constructed in complete analogy
to (3.1) will then not equal a multiple of the unit matrix
because of the coarseness of the cell structures estab-
lished in x space and in p space. However, we may
establish a sensible limit if we improve the fineness of
both cell structures and if we multiply the expression
(3.1) on the left by a factor corresponding to the
effective e, eventually becoming infinite, so that the
right side can actually tend to the identity operator I
(whose trace diverges).

We now return to the expression (2.4) and substitute
for a certain number of factors centered on F a multiple
of I, both in the numerator and the denominator. The
constant of proportionality used is immaterial, as it
drops out in any case, and we might use I directly. We
then see, almost by inspection, that (2.4) reduces to
(2.3), the pure prediction formula, and, likewise, that
(2.6) reduces to (2.1).We conclude, then, that because
of the asymptotic properties of expressions of type (3.2)
the prediction formulas may be recovered from the
time-symmetric formulas.

We may derive the corresponding "retrodiction"
expression by time reversing the procedure that we have
just presented. If we follow the initial selection of an
ensemble in the time-symmetric theory by a set of
coherence-destroying measurements, then the outcome
of subsequent observations is related to the final
selection as follows:

p(d(„d), ,d, /a, b) =Tr(D)D) .D,BD, D)) . (3.3)

If, in particular, we are concerned with the one observa-
tion preceding the final selection, then the probability of
the outcome d is

p(eb) = i(bid)i (3 4)

The coherence destroying properties of the procedure

summarized in Eqs. (3.1), (3.2), and of the correspond-
ing asymptotic procedure outlined for the infinite-
dimensional Hilbert space may be demonstrated by
straightforward computation. It would be of consider-
able interest if there were a broad range of procedures
having the same effect. Generally, sequences of measure-
rnents will destroy coherence to a greater or lesser extent
provided that they involve all directions of Hilbert
space in noncommuting measurements. There are, of
course, degrees of noncommutativity: The noncom-
rnutavity may involve varying numbers of directions
in Hilbert space, and the eigendirections of consecutive
operators may differ from each other by various angles.
Formally, the extent to which coherence is destroyed by
a given sequence may be evaluated in terms of the
degree to which matrices of the general form (3.2)
approximate a multiple of the unit matrix. That there
is some approach to the unit matrix in a sequence of
noncommuting measurements is assured by the results
to be found in von Neumann. ' If D& & is a set of idem-
potent operators belonging to the same measurement
and with properties

D( )D(())=g eD( ) g D( ) I
and if 3f is an arbitrary density matrix, then

M'=Q D( 'MD( )

(3.5)

(3.6)

is also a density matrix and approximates a multiple of
the unit matrix I at least as well as 3I in the following
respects: (a) If we define the entropy of M as usual by
the expression

then

8= —k Tr(M lnM),

s'&s.

(3.7)

(3 g)

The equality holds only if the idempotent operators
commute with M. (b) The range of eigenvalues of M' is
not greater than the range of eigenvalues of M; that is
to say, the upper limit of its eigenvalues is not larger
and the lower limit not smaller. Both entropy and
range of eigenvalue spectrum are yardsticks for the
approach to XI.

Thus, it appears that we can destroy coherence more
or less completely by a wide variety of sequences of
measurements and thereby obtain the asymptotic
prediction and retrodiction situations within the frame-
work of the time-symmetric theory of measurements.

The existence of the retrodiction formula (3.3), (3.4)
suggests that the customary assignment of a state vector
to a system on the basis of the most recent preceding
observation may be somewhat arbitrary. This assign-
ment is based on the intuitive notion that the measure-
ment is the "cause" and the quantum state the "effect,"
and that cause must precede effect in time. Also,
perhaps, there is the notion that the quantum state of
a system embodies the maximum of information avail-
able to us about the system at any time; ordinarily, we
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can know the outcome of all observations in the past
but not of those yet in the future.

But, as we have seen, under suitable circumstances
the usual prediction formula (2.1) may be replaced by
the retrodiction formula (3.4), which bases a proba-
bilistic statement about the outcome of one measure-
ment on the outcome of the measurement next following
in time. If the measurement of A (whose eigenvalues
are being denoted by d) is preceded by coherence
destroying operations as we have assumed in deriving
Eqs. (3.3) and (3.4), then we know essentially nothing
about the outcome of observations preceding A; that is
to say, all possible outcomes of such preceding observa-
tions are approximately equally likely. Hence, our
probabilistic statement about the outcome of the
measurement of A is based primarily on the event
immediately following, and the information on which
our statement is based ought to be incorporated in an
appropriate assignment of quantum state. Thus, we
are led into assigning the state

~
b) to the period of time

precedieg the observation of F yielding the eigenvalue b.
From a purely operational point of view, one might

eschew the assignment of quantum states to physical
systems altogether and instead rely entirely on proba-
bilistic statements referring to carefully defined en-
sembles. However, as long as one does assign quantum
states to physical systems, it appears defensible to do
so either in reliance on the (complete) observation
immediately preceding (as is customary) or on the one
next following, depending on circumstances. This
ambiguity indicates that the quantum state of a
system, though undoubtedly containing some elements
of "reality" independent of any observer, also has
subjective aspects.

We shall conclude this section by pointing out that,
in general, the dispersion of probabilities of the outcome
of one particular observation will be minimized (i.e.,
the "negative entropy" associated with this dispersion
will be maximized) if we use all information about the
system's past and future. This statement is a direct
consequence of the properties of the entropy function
to be found, e.g., in I&hinchin. Hence, if both the initial
and 6nal state of a system are known, use of the
prediction formulas (2.1) or (2.3) instead of (2.4) will
lead to a loss in precision of the probabilistic statement
concerning the intermediate observation.

IV. DIRECT PREDICTION

By now we have established that the conventional
prediction formulas can be recovered from the time-
symmetric expressions (2.4) by means of a model that
consists of shielding events close at hand from the
terminal selection on which (2.4) is based by the inter-
position of a series of "coherence destroying" experi-

A. I. Khinchin, Mathematicu/ Fogndations of Information
Theory, transl. by R. A. Silverman and M. D. Friedman (Dover
Publications, Inc. , New York, 1957}.

ments. Each measurement constitutes an interference
with the physical system which destroys in a limited
and mathematically well-described manner its dynamic
behavior as an isolated system.

Normally, the prediction formula (2.1) and its
corollary (2.3) are not conceived of as depending on
carefully managed follow-up maneuvers, but are
assumed to be independent of the subsequent history of
the system. That this prediction theory is indeed
logically independent of the time-symmetric formula
(2.4) may be deduced immediately from the circum-
stance that in our universe the prediction formula is
considered to be universally valid, whereas the time-
reQected formula, the retrodiction formula, is not.

Consider an ensemble of similar physical systems of
arbitrary provenance and select a sample on the
strength of a single complete measurement. The
conventional theory of measurement then furnishes us,
with respect to this selected subensemble, with relative
frequencies of outcomes of a subsequent measurement
or of a subsequent series of measurements, regardless of
the events that may have preceded the initial selection
procedure, as well as of those events that follow on the
heels of the specified series of measurements, as long as
no further selection is involved. The reverse theory
would have to concern itself with the probability of the
outcome of certain measurements on an ensemble of
similar physical systems, the ensemble to be determined
solely on the basis of a pure-state selection immediately
following the specified series of measurements; the
expression for the probabilities should contain no
reference to any events following the terminal selection,
nor to the manner in which physically similar systems
were collected prior to the onset of the series of measure-
ments. Clearly, in our universe no such "retrodiction
theory" would be valid: Suppose we constructed a
monochromatic and well-collimated beam of particles
possessing nonzero spin, performed some observation
referring to the spin distribution of the beam, and then
followed up with a Stern-Gerlach experiment singling
out those particles in the beam being in a very definite
spin state. Suppose we ask for the percentage of par-
ticles, from among those passing the postselection test,
that had specified outcomes in the antecederit experi-
ment (which should refer to an observable not possess-
ing the specified 6nal state as an eigenstate); surely
these probabilities would not be independent of the
state of polarization of our beam prior to the per-
formance of the first experiment.

We conclude, therefore, that in order to recover the
conventional prediction statement from the time-
symmetric formulas of Sec. II, we must adopt a
postulate that is logically independent of the time-
symmetric theory; the postulate that in our universe
ensembles chosen on the basis of an initial complete
measurement alone possess unambiguous and repro-
ducible probability characteristics. Once we adopt this
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postulate the conventional prediction formulas (2.1),
(2.3) follow from the time-symmetric formula (2.4)
and from the considerations of Sec. III. We found in
that section that there are "coherence destroying"
procedures that make the "prediction" expressions (2.6)
independent of the particular postselection we choose
to perform. But if there are methods by which we can
make our probabilities independent of the manner of
postselection and if, by our new postulate, there exist
unambiguous probabilities even in the absence of any
postselection, then these two sets of probabilities should
be equal.

Logically, it is conceivable that the time reverse of
our new postulate should also hold; this would mean
that postselection alone results in an ensemble with
well-de6ned and reproducible probability character-
istics. Actually we know that in our universe this
proposition is untrue. We are thus confronted with an
indubitable asymmetry in time direction. It remains
to discuss whether this asymmetry is a property of
microphysics proper or whether it represents the
intrusion of the macroscopic universe on the micro-
scopic scene. Granting that this question does not lend
itself to straightforward logical analysis, it appears to
us that the construction of ensembles in the real
physical universe is a macroscopic operation and that
it depends on the realities of the universe as a whole.
Let us return once more to our beam of particles
endowed with spin.

If we attempt to analyze the different manner in
which past and future histories affect its present
characteristics, we Gnd that no matter how we gather
our beam, its constituent particles have come from one
or several "sources" (e.g. , a laboratory device, a distant
galaxy, etc.), which determine its properties; there
simply is no way of avoiding preselection completely.
On the other hand, beams are not collimated toward
a "sink, "unless we arrange it so in our laboratory. This
asymmetry is directly associated with the fact that the
origins of all kinds of radiations in the universe are
spatially and temporally concentrated, and their

destinations are not. The nature of ensembles or beams
actually occurring in nature is, in fact, macroscopic,
not microscopic; it is determined by the same cause as
all macroscopic irreversibility, conceivably by the
expansion of the universe. '

As for the microscopically determined aspects of
quantum measurements, we believe that they can be
fairly summarized by the statement that in time-
symmetrically constructed ensembles the laws of proba-
bility are also time synunetric; further, that to the
extent that retrodiction situations may be said to exist,
they obey the same laws as the corresponding prediction
situations.
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