
Physics 501-21
Assignment 3

1.) To show the unusual power of ”post-selected” quantum mechanics,
Aharonov developed the ”Mean King” puzzle. A Physicist is shipwrecked on an
island which is ruled by a King. He loves cats and thus hates physicists. But to
be fair, he gives the physicists a problem. He has on his island a laboratory in
which has all of the greatest and latest equipment. He gives this problem.

He hands the physicists a spin 1/2 particle which is in an isolated chamber
such that he can assure the physicists that the free Hmiltonian is 0. Now he
says that the physicists can use the lab and that spin 1/2 particle. After the
physicist has done whatever he wants, the King takes that spin 1/2 particle and
makes a measurement of either the spin in the x direction, the spin in the y
direction, or the spin in the z direction, but does not tell the physicist which
he measured. He then hands the physicist back the particle and the physicists
can again do whatever he wants. The physicists is then called into the throne
room, and told which spin the king measured, and the physicist is asked what
the value was that was measured. This is repeated many times. If the physicist
ever gets the wrong answer, she is killed. How can she survive?

Note that if there were just two, say spin the x or y directions, it would
be easy. Before hand hand she would prepare the state in the x direction.
Afterwards she would measure it in the y direction. If the king measured it
in the x direction, the initial state would tell her what his answer would have
been. If the king measured it in the y direction, the final measurement would
tell her what the answer was. But with three, this clearly would not work. (If
she carried out the above, and the king measured it in the z direction, there
would only be a 50% chance of getting the answer) and thus she would have a
good chance of dying. (1/6 probability on each repetition).

The answer is in the paper
Aharonov, VAidman, Albert Phys Rev Letters 58, 1385 (1987)
Explicitly verify the various claims in the paper. Eg, prove that the states

in eqn2 are correct and that the outcomes in the table above eqn 2 are right.
————————————————————
While if there were only two choices one could solve this by doing a pre

measurement on the particle of say σx and a post measurement of σy (If the
King had picked σx the pre measurement would tell what it is, while if the King
picked σy the post measurement would tell what it was.) This however does
not work for σz as well. That would give only a 50-50 chance of both possible
values. However, the only possible way would be to entangle the particle with
another two level particle, and do post measurements on the two particles.

The paper gives the procedure.
a) Prepare the two spins in some Bell state. The one they advocate is the

state

Ψ =
1√
2
(|↑〉 |↑〉+ |↓〉 |↓〉) (1)
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Now measure some operator A which has the eigenstates

|φ1〉 =
1√
2

[

|↑〉e |↑〉+
1√
2
(|↑〉e |↓〉 eiπ/4 + |↓〉e |↑〉 e−iπ/4)

]

(2)

|φ2〉 =
1√
2

[

|↑〉e |↑〉 −
1√
2
(|↑〉e |↓〉 eiπ/4 + |↓〉e |↑〉 e−iπ/4)

]

(3)

|φ3〉 =
1√
2

[

|↓〉e |↓〉+
1√
2
(|↑〉e |↓〉 e−iπ/4 + |↓〉e |↑〉 eiπ/4)

]

(4)

|φ4〉 =
1√
2

[

|↓〉e |↓〉 −
1√
2
(|↑〉e |↓〉 e−iπ/4 + |↓〉e |↑〉 eiπ/4)

]

(5)

The four unit vectors |↑〉e |↑〉, |↓〉e |↓〉, 1√
2
(|↑〉e |↓〉 eiπ/4 + |↓〉e |↑〉 e−iπ/4), and

1√
2
(|↑〉e |↓〉 e−iπ/4 + |↓〉e |↑〉 eiπ/4) are all orthogonal to each other. (the third an

fourth are perphaps the non-obvious ones, but the inner produce is proportional
to eiπ/2 + e−iπ/2 = i + (−i) = 0. The first and second pairs are each sum and
differences of mutually orthogonal vectors and are thus orthogonal to each other.

Now one simply needs to check on the expectation of the various σi between
the |Ψ〉 and the various φa states.

[Note: 〈µ| |ν〉e |ρ〉 = 〈µ| |ρ〉 |ν〉e]
First we look at the expectation value of the various projection operators

onto the various eigenstates of the measurement

σz = +1 → Pz,1 = |↑〉 〈↑| (6)

Pz,1 |Ψ〉 =
1√
2
|↑〉e |↑〉 (7)

σx = +1 → Px,1 =
1

2
((|↑〉+ |↓〉)(〈↑|+ 〈↓|) (8)

Px,1 |Ψ〉 =
1

2
((|↑〉e + |↓〉e)(|↑〉+ |↓〉) (9)

σy = +1 → Py,1 =
1

2
(|↑〉 − i |↓〉)(〈↑|+ i 〈↓|) (10)

Py,1 |Ψ〉 =
1

2
((|↑〉e + i |↓〉e)(|↑〉 − i |↓〉) (11)

(12)

where Pz,1 is the projection operator onto the σz = 1 eigenstate. (Here σz = 1
means This is the eigenvalue of σz with eigenvalue of +1)

|φi〉Pz,1 |Ψ〉 = 1
2 for i=1 or 2, and is 0 for 3 or 4. since only the first two φ

states have a |↑〉 |↑〉 term in them.
Similarly |φi〉Pz,1 |ψ〉 = 0 for 1 and 2 and 1

2 for 3 or 4. Thus if the scientist
measured i of 1 or 2 afterwards, they knew that σz was value 1, and was value
-1 for 3 or 4.

Thus for each |φi〉 state, the probability of some eigenvalue of σz is either 1
or 0. which of the states |φi〉 one measured, the value of σz is definite.
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Similarly for σx.

〈φ1,2|Px,1 |ψ〉 = 〈φ1,2|
1

2
(|↑〉e |↑〉+ |↓〉e |↓〉+ |↓〉e |↑〉+ |↑〉e |↓〉) (13)

= 〈φ1,2|
1

2
(|↑〉e |↑〉+ |↓〉e |↑〉+ |↑〉e |↓〉) (14)

=
1

2
√
2
(1±

√
2(cos(π/4) =

1

2
√
2
(1± 1) (15)

and similarly for 3,4. For σx = −1, we have 2 and 4 having inner product of
1/4 while 1 and 3 have 0. Thus 1 and 3 will have probability 1 of have having
value of σx be 1 while 2 and 4 will have probability of 1 of having σx be -1.

Finally, doing the same for σy be 1, we have

〈φi|Py,1 |ψ〉 = 〈φi|
1

2
(|↑〉e + |↓〉e |↓〉+ i |↓〉e |↑〉 − i |↑〉e |↓〉) (16)

Again for 1,2 we have

〈φ1,2|Py,1 |ψ〉 = 〈φ1,2|
1

2
(|↑〉e |↑〉+ i |↓〉e |↑〉 − i |↑〉e |↓〉) (17)

=
1

4
(1±

√
2sin(−π/4))) = 1/4(1−±1) (18)

while for 3 and 4 they are 1
4 (1− (±1).

When the King tells the Physicist which of the σ he measured, the physicist
can tell him, knowing what the outcome was for the |φi〉 he got, what the value
was for the that choice of the σ.

++++++++++++++++++++++++++++++++

2) Assume that we have a Hamiltonian

H =
1

2

(

p21
m2

1

+
p22
m2

+ k1x
2
1 + k2x

2
2 + 2ǫx1x2

)

(19)

a)What are the 4 eigenvalues ±iω1, ± ω2 of the Hamiltonian equations for
this Hamiltonian in terms of the constants m1,m2, k1, k2, ǫ.

———————————

−iωx1 = p1/m1; −iωx2 = p2/m2; (20)

−iωp1 = −k1x1 − ǫx2; −iωp2 = −k2x2 − ǫx1 (21)

or

−m1ω
2x1 = −k1x1 − ǫx2 (22)

−m2ω
2x2 = −k2x2 − ǫx1 (23)
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which has solutions only if

(m1ω
2 − k1)(m2ω

2 − k2) = ǫ2 (24)

This is a quadratic real equation in ω2 which means that ω2 has two solutions.
There will be equal solutions if ω2 = 0 is a solution (in which case k1k2 = ǫ2),
or if ǫ = 0 and k1/m1 = k2/m2

ω2 =
−(k1 + k2)±

√

(((k1 + k2)
2 − 4k2k2 + 4ǫ2)

2(m1 +m2)
(25)

=
−(k1 + k2)±

√

(k1 − k2)2 + 4ǫ2

2(m1 +m2)
(26)

Ie, having a non-zero interaction between the two oscillators ensures that
one cannot have degenerate eigenvalues.

++++++++++++++++++++++++++++++++

b) Is there any condition on ki,mi, ǫ such that ω1 = ω2?
c) If m1 = m2, k1 = k2, is there any condition on ǫ such that the eigenvalues

are not purely imaginary?
——————————————
The square root can never be imaginary. However, if it is larger than k1+k2,

then there is a solution for ω2 which is negative. Ie, if (k1−k2)2+4ǫ2 > (k1+k2)
2

or ǫ2 > k1k2 then ω2 will have a solution which is negative, and the oscillator
system will be unstable.

++++++++++++++++

d) What are the normalised (using the symplectic norm) eigenvectors if
m1 = m2, k1 = k2 and ǫ 6= 0?

—————————————-
ω2 = (k ± |ǫ|)/m.
There is a symmetry in the Hamiltonian in this case, where x1, p1 ↔ x2, p2.

The two eigenvalues of this symmetry is that the system be symmetric or
antisymmetric under interchange of x1 or x2. The antisymmetric solution has
(x2, p2) = (−x1, p1) and the equation then are

−iωp1 = −(k − ǫ)x1 − iωx1 = p1/m (27)

Thus

< x, p >= 2i(−ix21)(
√

(k − ǫ)m = 1 (28)

x1 = −x2 =
1

(4(k − ǫ)m)1/4
(29)

3. Consider the Hamiltonian H = 1
2 (p

2 − x2). What are the eigenvalues? of
the Hamiltonian equations? Show that there are no purely imaginary eigenval-
ues.

———————————————————
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−iωx = p (30)

−iωp = x (31)

or ω2 = −1 Thus iω = ±1.
++++++++++++++

Find a positive norm, normalised values of the initial momentum and po-
sition. What is the time dependence of this mode. Show that its norm is
independent of time explicitly.

——————————————
Let us take the inital conditions x0 = 1/

√
2, p0 = −i/

√
2. (Note that there

are many other possibilities.) This has positive norm

i

2
(−i− i) = 1 (32)

(Note there are many other possibilities. The only requirement is that x0/p0
not be real.

i(x∗0p0 − p∗0x0) = 0 → i

(

x0
p0

)∗
=
x0
p0

(33)

).
With these intial conditions, the equations are

x = x0cosh(t) + p0sinh(t) =
1√
2
(cosh(t)− isinh(t)) (34)

p = p0cosh(t) + x0sinh(t) =
−i√
2
(cosh(t) + isinh(t)) (35)

Then

< x, x > =
i

2
((cosh(t) + isinh(t))(−i)(cosh(t) + isinh(t))− (i)(cosh(t)− isinh(t))(cosh(t)− isinh(t))(36)

= cosh(t)2 − sinh(t)2 = 1 (37)

++++++++++++++++++++++++++

Find the Annihilation and creation operator this mode, and show explicitly
that they are independent of time.

—————————————————- The solution of the equations for
X,P is

X = X0cosh(t) + P0sinh(t) (38)

P = P0cosh(t) +X0sinh(t) (39)

5



and

A = < x,X >=
i√
2
((cosh(t) + isinh(t))(P0cosh(t) +X0sinh(t))− i(cosh(t)− isinh(t))(X0cosh(t) + P0sinh

= (X0 + iP0)/
√
2

A† = (X0 − iP0)/
√
2

Which are clearly time independent.
Suppliment:
If we want to write the state Ψ(x, t) = 〈x| |0〉 where 0 is defined by A |0〉 = 0

and X(t) |x〉 = x |x〉 then the equation for Ψ(x, t) is < x,X > Ψ(x, t) = 0 or

i√
2
[(cosh(t) + isinh(t)(−i∂x))Ψ(x) +−i(cosh(t)− isinh(t))xΨ(x, t) = 0 (43)

Ψ(t, x) = exp

(

−cosh(t)− isinh(t)

cosh(t) + i sinh(t)

x2

2

)

(44)

= exp

(

−1− isinh(2t)

cosh(2t)

x2

2

)

(45)

This is the full time dependent Schroedinger solution, obtained without having
to solve the messy time depedent Schroedinger equation.

++++++++++++++++++++++++++

The following is a bonus question. The max mark on the assignment is for
the first three question, but this one’s mark can increase your mark (to over
100possibly)

4. Given a field φ(t, x) with a Lagrangian

L =
∑

n

(

∂tφ(t, xn)− v
(φ(t, xn+1 − φ(t, xn−1)

2∆x

)2

−
(

(φ(t, xn+1)− φ(t, xn−1)

xn+1 − xn−1

)2

(46)

where x0 = 0, xN = L, ∆x = xn − xn−1 is independent of n, and xn+N ≡ xn.
(periodic boundary conditions).

(This is the model for sound waves in a one dimensional lattice with unit
sound velocity).

a) Find the conjugate momenta to φ(xn) and the Hamiltonian for this prob-
lem.

————————————————————————–
The conjugate momentum is is the veriational derivative with respect to

∂tφ(xn) which in this case is

π(xn) = 2(

(

∂tφ(t, xn)− v
(φ(t, xn+1 − φ(t, xn−1)

2∆x

)

(47)

(Note that I seem to have forgotten the standard 1
2 before the Lagrangian so

this explains the factor of 2 in front.
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The Hamiltonian is

H =
∑

n

π(xn)∂tφ(xn)− L (48)

=
∑

n

π(xn)(
1

2
π(xn) + v

(φ(t, xn+1 − φ(t, xn−1)

2∆x
−
(

1

4
π(xn)

2 −
(

(φ(t, xn+1)− φ(t, xn−1)

xn+1 − xn−1

)2
)

(49)

=
1

4
π(xn)

2 −
(

(φ(t, xn+1) + φ(t, xn−1)

xn+1 − xn−1

)2

+ π(xn)v
(φ(t, xn+1 − φ(t, xn−1)

2∆x
(50)

++++++++++++++++++++++++++++++++++++
b)Find the equations of motion for this field. If a mode for the field has the

solution φ(t, x) ∝ e−i(ωt−kx) what are the possible values of k and the relation
between ω, k for a solution to the equations of motion.

———————————————

∂tφ(xn) =
1

2
π(xn) + v

(φ(t, xn+1 − φ(t, xn−1)

2∆x
(51)

∂tπ(xn) = +
φ(xn+1 + φ(xn−1)− 2φ(xn)

∆(x)2
− 1

2
v
π(xn + 1)− φ(xn − 1)

2∆x
(52)

Note that ”n” in the Hamiltonian is a ”dummy variable” since it is summed
over. Thus you need to find all of the values of that dummy variable which have
the value n.

If we choose φk(t, xn) ∝ e−i(ωt−kxn), πk would also have to have the same
dependence, and the equations of motion become

−iωφke−i(ωt−kxn) = (
1

2
pik + vφk(

eik∆x − e−ik∆x

2∆x
)e−i(ωt−kxn) (53)

−iωπke−i(ωt−kxn) = −φk
eik∆x + e−ik∆x − 2

∆x2
e−iωt−kxn − 1

2
vπk

eik∆x − e−ik∆x

2∆x
e−iωt−kxn (54)

or

−iωφk = (
1

2
pik + vφki

sin(k∆x)

∆x
(55)

−iωπk = (φk2
cos(k∆x)− 1

∆x
+ iv

1

2
πk

sin(k∆x)

∆x
(56)

The system is also periodic in n, so that xN + 1 = x1 which means that
eik(N+1)∆x = eik∆x or Nk∆x = 2πr where r is some integer. Thus

k = 2π
r

Ni∆x
(57)

Putting this into the above, we get

(ω − v
sin(2π r

N )

2∆x
)2 =

cos(2π r
N )− 1

∆x2
(58)

++++++++++++++++++++++++
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c) What is the inner product for two of these solution-modes with different
k and ω.

———————————————————–

< φk, φ
′
k >=

i

2

∑

n

(

φ∗kπ
′
k − pi∗kφ

′
k)e

i((ω−ω′)t−(k−k′)xn)
)

= 0 (59)

since

N
∑

n=1

ei2πr−r′n/N =
ei2π(r−r′)(N+1)/N − ei2π(r−r′)(1/N)

(1− ei2π(r−r′)
= 0 (60)

Thus all solutions with different k, k′ have zero norm. The two solutions with
the same k but diffferent ω (one the negati of th other) are complex conjugates
of each other, and the norm of complex conjugates with the solution are also
zero.

++++++++++++++++++++++++++++++++++++
d) What is the norm of a mode for a given value of ω, k. What is the relation

between the sign of the norm and that of ω if v < 2
pi∆x , if v < 1/2∆x and for

v > 1/2∆x?
——————————————————————-
The exponential part is

∑

n

1 = N (61)

Thus the norm is

N
i

2
φ∗kπk − π∗

kφk (62)

But −i(ω − v sin(2πkr)
∆x )φk = 1

2πk so the norm is (ω − v sin(2πkr)
∆x )N |φk|2. The

equation of motion give

(ω − v
sin(2π r

N )

∆x
) = ±

√

2
cos(2πr/overN − 1

∆x2
= ±2

sin(2π r
2N

∆x
(63)

or, taking the positive root which would have positive norm

ωr = 2
sin(2π r

2N

∆x
+ v2

sin(2π r
N

∆x
(64)

which is negative if v > 1 for r near N .
Thus, if v > 1 we find that the the sign of ω can be the opposite to the

sign of ω − v
sin(2π r

N
)

∆x )). Ie, the sign of ω can be opposite the sign of the norm.
Positive norm can be negative frequency, and vice versa. It is the norm that
the determines the annihilation and creation operators since
[

< {φke−(iωt−kxn)}, {Φ(xn)} >,< {(φke−i(ωt−kxn))∗}, {Φ(xn)} >
]

=< {φke−iωt−kxn)}, {φke−iωt−kxn)} > (65)
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Figure 1: This is a plot of the norm, the frequency, and the velocity dependent
term for the above as a function of r, with N=1000. The black curve is the
norm, equal to ∆(x)(ω+v sin(2π r

N ) for |φk|2 = 1 with v=1.5 . The green curve
is ∆xω while the red is the v dependent term. Note that for r less than about
400, ω is negative, while the norm is positive. Ie, the annihilation operator is
associated with negative frequencies rather than positive in this regime.

which must be equal to +1 for Annihilation operators.
+++++++++++++++++++++++++++++++++++++++++++
Note that this would be even more interesting if we were to make the dis-

persion relation look like that for a BEC

L = ∆x
∑

n

(

∂tφ(t, xn)− v
(φ(t, xn+1 − φ(t, xn−1)

2∆x

)2

(66)

−
(

(φ(t, xn+1)− φ(t, xn−1)

xn+1 − xn−1

)2

(67)

− κ2
(

(φ(t, xn+2)− 2φ(t, xn)− φ(t, xn−2)

∆x2

)2

(68)

which is the discrete Gross Piatevskii approximation to a flowing Bose Einsten
Condensate where κ << N∆x is the healing length of the BEC. But this is not
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the question I ask.
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