
Physics 501-20
Assignment 1

1.) Hardy system: Given the state

|Ψ〉 = α |↑〉 |1〉+ β |↓〉 (S |1〉+ C |0〉) (1)

where this is a unit vector with |alpha|2 + |β|2 = 1 and |C|2 + |S|2 = 1
i)Argue that we can always choose the coefficients are real and positive.
————————————————–
The normalised eigenstates remain normalised eigenstates even if one changes

the phase of the eigenstate. Thus we can change the total phase of the wave func-
tion, and we can change the phase of each of the eigenvectors |↑〉 , |↓〉 , |1〉 , |0〉.
If C, S, α, β are complex, we can absorb the phase of C into |1〉 ,, S int |0〉, β
into |↓〉, and α into |↑〉.

**************************************************
ii) Find the value of S that minimizes the probability of having the final

value of ”Y ” be equal to +1.
——————————————————-
Measurement of the projection onto |↑〉 gives the second having |1〉. Mea-

surement of |1〉 gives the first having N(α |↑〉+βS↓)) as its normalised eigenvec-
tory, with N being a normalisation factor. Meaurement of the projection onto
N(α |↑〉+ βS) gives the second having the state

NM(α2S |1〉+ β2S(C |0〉+ S |1〉) = NM(α2S + β2S2) |1〉+ β2SC |0〉 (2)

as its state vector. The ratio of the probability that the second system has |0〉
as its state over that it has |1〉 ( which is orthogonal to |1〉 is thus

P0

1− P0

=
β4S2C2

S2(α2 + beta2S)2
=

β4C2

(α2 + β2S)2
=

((1− α2)2(1− S2)

(α2 + β2S)
(3)

Maximizing this S, we find S = α√
1+α2

as the positive minimum.

***************************************************
iii) Given that value of S, is the largest value of the the ration of the eigenval-

ues λ1λ2 where the two λ are the two eigenvalues of the reduced density matrix
of particle 1 with λ1 being the smallest of the eigenvalues.

—————————————————–
The reduced density matrix for system2 is

ρ = α2 |1〉 〉1|+ β2(S |1〉+ C |0〉) ∗ (S 〉1|+ C 〉0|) (4)

= (α2 + β2S2) |1〉 〉1|+ β2SC(|1〉 〉0|+ |1〉 〉0|) + β2C2 |0〉 〉0|) (5)

The eigenvalue equation is then

λ2 − λ+ ((α2 + β2S2)beta2C2 − β2S2C2 (6)

= λ2 − λ+ α2β2C2 (7)

=
1

2
(1±

√

1− 4α2β2C2 =
1

2
(1±

√

1 + α4

1 + α2
(8)
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Since 0 < α < 1, the eigenvalues go from 1/2, 1/2 to 0, 1. If α is small,
the eigenvalues are α2/4, 1 − alpha2/4 to lowest order in α. If α is near 1, the
two eigenvalues are 1− (1− α)/4, (1− alpha)/4 which are again near 0,1. The
minimum difference between the two eigenvalues is when a2 = sqrt(2) − 1, for
which the two eigenvalues are approx (.09 and .91). Ie, this does not allow us
to get anywhere near a maximal entanglement.

********************************************

2) No Cloning:
Alice claims that she can duplicate a state, such that if the state is |ψ〉 =

α |0〉 + β |1〉 and |φ〉 = α |↓〉 + β |↑〉 that she can start with a state |ψ〉 |↓〉 and
create the state |ψ〉 |φ〉 without knowing what the coefficients α or β. Is she
right and if not, why not, and if yes, how?

————————————————–
This is pretty straightforward. If one had a way to clone a state, one would

start with a state like

|Ψ〉 = (α |↑〉+ β ↓) |0〉 (9)

Ie, one would start out with the system one wanted to clone to being in some
fiducial state, here indicated by |0〉. After the cloning one would have

|Ψ〉′ = (α |↑〉+ β ↓)((α |1〉+ β |0〉) (10)

But this is not a linear transformtion. It is clearly non-linear in α and β. But
all transformations in QM are linear.

(Note that Wooters and Zurek got a PRL out of this observation).
***************************************************

3) Bell states and Quantum Teleportation:
i) Show that the four bell states over two two-level systemsi and j (basis

vectors indicated by |↑i〉 and |↓i〉. i indicates which two level system is being
referred to.) (Note that the state |↑1, ↑2〉 say is equivalent to |↑1〉 |↑2〉

|Bij0〉 =
1√
2
(|↑i↓j〉 − |↓i↑j〉) (11)

|Bij1〉 =
1√
2
(|↑i↓j〉+ |↓i↑j〉) (12)

|Bij2〉 =
1√
2
(|↑i↑j〉 − |↓i↓j〉) (13)

|Bij3〉 =
1√
2
(|↑i↑j〉+ |↓i↓j〉) (14)

(15)

are orthogonal to each other, are complete (ie, any state of a two-twelve system
can be written in terms of them.)
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———————————————————–

1√
2
(|Bij0〉+ |Bij1〉) = |↑i↓j〉 (16)

1√
2
(|Bij0〉 − |Bij1〉) = |↓i↑j〉 (17)

1√
2
(|Bij2〉+ |Bij3〉) = |↑i↑j〉 (18)

1√
2
(|Bij2〉 − |Bij3〉) = |↓i↓j〉 (19)

The RHS are clearly a complet set of states in terms of which any other two-
twolevel system’s state can be written in terms of.

|Bij0〉, and |Bij1〉are clearly orthodonal to |Bij2〉, and |Bij3〉 since all the
components are orthogonal.

Also |Bij1〉 and |Bij0〉 are orthogonal, since 〉↑i↓j | |↑i↓j〉 = 〉↓i↑j | |↓i↑j〉 = 1
and 〉↑i↓j | |↓i↑j〉 = 0

Each of the 4 terms|↑i↓j〉 are unit vectors and thus the sum of two of them
(as all the B’s are) would have a norm of 2, which is what the 1√

2
compensates

for.
************************************************************
Now interpret |↑〉 as the σz = 1 eigenstate for the Pauli matrix, and |↓〉 as

the σz = −1 eigenstate of that same z Pauli matrix. system. The |B〉ij0 and
|B〉ij1 are -1 eigenstates of the Zij1 = σizσjz operator and the other two are +1
eigenstates of that same operator. Also |B〉ij0 and Bij2 are -1 eigenstates of the
operator which exchanges |↑i〉 with |↓i〉 and |↑j〉 with |↓j〉 (the Zij2 = σixσjx
operator) and the other two are the +1 eigenstates of this operator. Define
ZijN = 1

2
(Z1+1)+(Z2+1). It has eigenvalues or {0, 1, 2, 3} and the eigenvectors

are BijN .
Now, introduce a third system in an unknown arbitrary stateα |↓3〉+ β |↑3〉,

and assume that the initial state of particles 1 and 2 is |B120〉
ii) One now measures the operator Z13N What is the state of of second

particle after this measurement for the four possible eigenvalues? Show that the
probabilities each of the possible outputs are all equal. Ie, the outcome of the
measurement of Z13N give no hints as to the values of α and β.

————————————————————–
The B13n are the eigenvectors of Z13N , We have

〉B130| |B〉 120(α |↓3〉+ β |↑3〉) =
1

2
〉↑1| 〉↓3| (α |↑1〉 |↓2〉 |↓3〉+ α |↓1〉 |↑2〉 |↓3〉)(20)

+ 〉↑1| 〉↓3| (β |↑1〉 |↓2〉 |↑3〉+ β |↓1〉 |↑2〉 |↑3〉)(21)

+ 〉↓1| 〉↑3| (α |↑1〉 |↓2〉 |↓3〉+ α |↓1〉 |↑2〉 |↓3〉)(22)

+ 〉↑1| 〉↓3| (β |↑1〉 |↓2〉 |↑3〉+ β |↓1〉 |↑2〉 |↑3〉)(23)

=
1

2
(α |(〉 ↓2) + β |↑2〉) (24)
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The norm squared of this vector which is the probability of obtaining this vector,
is 1

4
.
Similarly

〉B131| |B120〉 (α |↓3〉+ β |↑3〉)) =
1

2
(α |↓2〉 − β |↑2〉) (25)

〉B132| |B120〉 (α |↓3〉+ β |↑3〉)) =
1

2
(β |↓2〉+ α |↑2〉) (26)

〉B133| |B120〉 (α |↓3〉+ β |↑3〉)) =
1

2
(β |↓2〉 − α |↑2〉) (27)

The first term expression is exactly the state of the system 3 transfered to
2. The second is the state but with a minus sign in front of the ↑2. Thus if one
operates on this state with a unitary operator which switches the sign of the ↑2
term, we again get the state of 3 transfered to 2. In the third, if we switch |↑2〉
with |↓2〉 we again get the switch we want, and for the fourth, if we switch and
change the sign of the resultant |↑2〉 we get the state transfered to 2.

Thus, as long as we measure some operator on 1 and 3 whose eigenvectors
are the Bell states, and whose eigenvalues differ for each of the Bell states and
we transfer to the person at 2 which of the eigenvalues we got, the person at 2
can transform his state on his system with the appropriate transformation to
result in the state of 3 having been exactly transfered to 2.

We could have set up the entangled state between 1 and 2 and then sent
2 far way, this procedure would transfer the unkown state of 3 exactly to that
system 2. Of course after the measurement on 1 and 3, they will be left in one
of the Bell states, and thus retain no memory whatsoever of what that intial
state of 3 was. The only memory will be in system 2.

************************************************************
iii)Show that for each measured outcome there is a simple unitary transfor-

mation which converts the state of the second particle into α |02〉 + β |03〉. Ie,
one has transformed the unknown state of the first particle 3 into the same state
for particle 2. Note that this is true even if the second particle is over at Alpha
Centauri and particles 1 and 3 are on earth.

Ie, a joint measurement on particles 1 and 3 which gives no information
about that unknown state, and the classical transmission of the outcome of
that measurement of that apparently useless measurement to someone who has
system 2, allows someone at the location of 2 to make an exact copy of that
unknown state of system 3, but at the expense of destroying the original state
of system 3. Ie, this does not run afoul of the ”No-cloning” theorem. There are
never two copies of the initial state of system 3.

———————————————-
In each case the state of the system 2 is clearly related to the original. In

the case of |B130〉 is measured, for the joint system 1 and 3, the state of 2 is
α |↑〉+ β |↓〉, which is exactly the intial state transfered to particle 2. Thus one
has to operate on the system 2 with the identity matrix, which is a unitary
matrix. In the case |B131〉 is measured, it is α |↑〉−β |↓〉. This can be transfored
to the original state of particle 3 by a unitary transformation which changes
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the sign of |↓〉, namely Σz. In caset B2 was measured on particles 1 and 3,
the final state of 2 is α ↓ +β ↑ which can be transformed to the required state
by interchanging uparrow and downarrow – the unitary operator Σx. Finally
if |B133〉 was measured, then the operator is Σy. While this also multiplies the
state by the pure phase i = eiπ/2 multiplication by a pure phase of course leaves
the state the same.

Note that these measurements are done by measuring the Z13N operator on
the joint system of 1 and 3. If Z13N → 0 we have the state B130. If Z13N → 1
the |B131〉, if Z13N → 2 then |B132〉 and if Z13N → 3 then |B133〉

*******************************
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