
Physics 501-20
Concepts: 1)Coherent state
Consider an annihilation operator A. The vacuum state is A |0〉 = 0. Now

define a new state |a〉 such that A |a〉 = a |a〉. Ie it is an eigenstate of A. This
must a some function of f(A†) |0〉.

Af(A†) |0〉 = af(A†) |0〉 (1)

But [A,A†] = 1 and so one could formaly represent A as A=∂
∂A† and thus

Af(A†) |0〉 = ∂

∂A†
f(A†) |0〉 = af(A†) |0〉 (2)

or f(A†) = eaA
†

. Alternatively,

A,A†N =
N−1
∑

r=0

A† r[A,A†]A† (N−1−r) = NA† N (3)

so
∑∞

N=0
dNf

dA† N (0)A
†N

N ! is the Taylor series expansion of f(A†) , and [A, f(A†)] =
dNf

dA† N (0)A
†(N−1)

(N−1)! and thus Af(A†) |0〉 = af(A†) |0〉 becomes dNf

dA† N=a
dN−1f

dA† N

. If

one choses f(0) = 1 then dNf
dA† N (0) = aN and f(A†) = eaA

†

If we now choose A = Ã+ a, then Ã also obeys [Ã, Ã†] = 1 and the vacuum
state for Ã will obey A

∣

∣0̃
〉

= a
∣

∣0̃
〉

.

We will choose the state for the field φ̃ such that Aω+ν |ψ >= αδ(ν). We
will call Aν = Aω+ν − αδ(ν).

2) Mirror pressure;
The interction between the field and the mirror, which is what you are

measuring, is, on the one had, the reflection by the mirror of the light, and on
the other hand the field influences the mirror by by the radiation pressure of
the radiation on the mirror.

If one has a Lagrangian for the field, say

L = 1/2

∫

(∂tφ
2)− (∂xφ)

2dx, thenthiscanbe (4)

written in terms of the metric ( the distance function in spacetime) gij as

L =
1

2

∫

1
√

−gttgxx + (gtx)2

∫

[

(gtt∂tφ)
2 + gxx(∂xφ)

2 + 2gtx∂tφ∂xφ
]

dx (5)

Then the components of the energy momentum tensor are

E = δgttL (6)

P = δgxxL (7)

J =
1

2
δgtxL (8)

(9)
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evaluated with g11 = 1, gxx = −1 and gtx = 0. If one does this, then one gets
the conservation laws

∂tE − ∂xJ = 0 (10)

∂tJ + ∂xP = 0 (11)

These are the energy/momentum conservation laws, with the momentum being
the same as the Energy flux J . P is the pressure, E is the energy density, and
J is the energy flux or the momentum density. The pressure become

P = ±1

4
(∂tφ

2 + (∂xφ) (12)

If P is positive, the pressure exerts a force outwards on any boundary.
3) Particle flux.
A particle detector acts by the field exiciting some detector from its ground

state to an excited state with Energy ǫ. The excitation operator will be some
creation operator time eiǫt. The interaction between the detector and the field
is given by a product between the creation operator of the detector times the
field, which one has to integrate over time. This picks out (for a static detector)
the components of the field which go as e−iλt at the position of the detector.
The particle density is essentially the norm

ρN =
i

2
(Φ†

+∂tPhi+ − ∂tΦ
†
+Φ+). (13)

where Φ+ are the componets of Φ which go as e−iλt with λ > 0 (they are the
parts of the field which could excite the detector). since particles should be
conserved the particle flux is

jN = − i

2
((Φ†

+∂xPhi+ − ∂xΦ
†
+Φ+) (14)

and ∂tρN + ∂xjn = 0.
4)In this paper, I assume that the boundary conditions on the mirror are

the Neumann boundary condition for the field. These are for example the
conditions obeyed by the magnetic field at the surface of a perfect conductor.
This condition is that the normal spatial derivative of the field at the surface
is equal to zero. One could also use Dirchlet conditions, which is where the
value of the field on the surface is zero. Both give the same answers, although
the outgoing field has opposite signs in the two cases. This does not change
the final result. (One could even require Robin conditions in which the a fixed
combination of value plus derivative be zero on the boundary. Again, it makes
no change to the result, although the conditions are messier, and leads to a
phase shift on the boundary for a plane-type wave).

5) Beam splitter
I assume that the Beamsplitter is the simplest kind where the field coming in

to the beam splitter is from one direction splits the beam in two, with a relative
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+ sign between them, and with a - sign between the two when the the beam
comes in in the other direction. I also assume tha the system is symmetric–
if one reflects the out beams back with the reflecting Neumann mirros being
equidistant from the splitter, the results will come back out the ssame ports
they want in, with the same sign. The beamsplitter could insert a variety of
phases on the two possibilities (eg, such that the splitter inintroduced phases
of various sorts into the varous beams (with the condition that the total norms
are preserved). Again, this could well alter the details (eg the ”dark” output
could be the bright input– eg, with perfect equispaced mirrors, if one shone a
light into one port, it could all come back out of the other port.) The bright
input port would be the dark output port. Dark input implies dark output with
perfect symmetry for the mirrors is the easiest for me to analyse.

Laser Interferometer measurement of force on a mirror

Figure 1: laser interferometer measurement on mirror M with beamsplitter BS

φ(t− x) =
1√
2
(φ̃(t− x) + ψ̃(t− x)) (15)

ψ(t− x) =
1√
2
(φ̃(t− y)− ψ̃(t− y)) (16)
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Neumann boundary conditions at x = X(t); y = −X(t)

∂x(φ̂(t+ x) + φ(t− x))|x=X(t) = 0 (17)

∂y(ψ̂(t+ y) + ψ(t− y))|y=−X(t) = 0 (18)

φ̂(t) = φ(t− 2X(t)) (19)

ψ̂(t) = φ(t+ 2X(t)) (20)

(we assume that X(t) is very small and X(t) is lowly varying so that X(t +
2X(t)) ≈ X(t))

˜̂
φ(t+ x) =

1√
2
(φ̂(t+ x) + ψ̂(t+ x)) (21)

˜̂
ψ(t+ y) =

1√
2
(ψ̂(t+ y)− φ̂(t+ y)) (22)

(23)

Then, after reflection at the mirror,

˜̂
ψ(t+ y) =

1

2

(

(ψ̃(t+ y − 2X(t)) + φ̃(t+ y − 2X)) (24)

+ (ψ̃(t+ y + 2X(t))− φ(t+ y + 2X(t))
)

(25)

≈ 1

2
(2ψ̃(t+ y)− 2∂tφ̃(t+ y)(X0 + 2X̂(t)) (26)

Where we have retained only terms to lowest order in X(t). We assume that
X(t) = x0 + X̂(t) where < X̂(t)2 ><< x20 << |α|2 and x0 is a c-number.

We now assume that

φ̃(t− x) =
e−iω(t−x)

√
2πω

(α+A(t− x))e−iν(t−x)dν) + HC (27)

ψ̃(t− y) =
e−iω(t−y)

√
2πω

B(t) + HC (28)

where |α| >> 1 and where we have used ω + ν ≈ ω. ν will be the fourier
frequencies of the the mirror motion , which will be assumed to be small (less
then 1KHz) while ω is an optical laser frequency (1015 Hz). We will keep only
terms linear in A,B,X with no cross terms between them.

α is the coherent C-number amplitude of the laser beam and will be assumed
to be real, Aν and Bν are the annihilation operators around that coherent
amplitude for the φ̃ and ψ̃ fields. (In more conventional notation Aν = Aω+ν

and similarly for Bν , the annihilation operators at the frequency around the

C-number coherent laser output. Then the output from the ψ port, the
˜̂
ψ field,

will be

˜̂
ψ(t+ y) ≈ e−iω(t+y)

√
2πω

(

−iω(x0 + X̂(t))α+B(t)
)

+HC (29)
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A particle detector is a device that gets excited when it interacts with a
quantum field in an excited state. If the detetor has energy E the probability
is propoportional to the operator

∫

φ(t′, x)eiEt′dt (30)

This selects out the terms in φ(t, x) which go as e−iEt and it is htus the ψ̂+(t+x)
terms which could excite a detector (assuming that the detector is at rest and
not accelerated.)

The particle number flux is given by

NF =
i

2
(
˜̂
ψ
†

+(t+ y)∂y
˜̂
ψ+(t+ y)− ∂y

˜̂
ψ†

+(t+ y)
˜̂
ψ+(t+ y) (31)

≈ ω(
˜̂
ψ†

+(t+ y)
˜̂
ψ+(t+ y) (32)

where
˜̂
ψ+ is the part of

˜̂
ψ+ which goes as e−iω(t+y), or

˜̂
ψ+ =

e−iω(t+y)

√
2πω

(

−iω(x0 + X̂(t))α+B(t)
)

(33)

In the number flux, we keep terms to only first order in X̂ and B to give

NF ≈ 1

2π

(

α2ω2(x20 + 2x0X̂)− αx0i(B(t+ y)−B†(t+ y))
)

(34)

We now need to look at the behaviour of X̂(t) and its fourier transform. Its
equation of motion will be

M∂2t X̂ = PA+ F (t) (35)

where P is the pressure on the mirror due to the φ and ψ fields, A is the effective
area of the mirror that the pressure is acting on, and F (t) is a classical force
that acts on the mirror and is what we want to measure.

The energy density and pressure in the rest frame are given by

P =
1

4

(

(∂tφT (t, x))
2 + (∂xφ̂T (t, x))

2) (36)

− (∂tφT (t, y))
2 − (∂yψ̂T (t, y))

2)
)

|x=−y=X(t) (37)

E =
1

4

(

(∂tφT (t, x))
2 + (∂xφT (t, x))

2) (38)

+ (∂tφT (t, y))
2 + (∂yψT (t, y))

2)
)

|x=−y=X(t) (39)

Here

φT (t, x) = φ(t− x) + φ̂(t+ x) = φ(t− x) + φ(t+ x− 2X(t+ x)) (40)

ψT (t, x) = ψ(t− y) + ψ̂(t+ y) = ψ(t− y) + ψ(t+ y + 2X(t+ y)) (41)
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Now, at x = X; y = −X, the Neuman boundary condition is that the derivative
with respect to x and y are zero, so only the time derivative terms are non-zero

P ≈ 1

4
((∂tφ(t−X(t)) + ∂tφ(t−X(t))(1− 2∂tX(t)))2 (42)

− (∂tψ(t+X(t)) + ∂tψ(t+X(t))(1 + 2∂tX(t)))2) (43)

=
1

4
((∂tφ(t))

2 − (∂tψ)
2)− 4(∂tφ(t)∂

2
t φ(t) + ∂tψ(t)∂

2ψ(t))X (44)

− 4(∂tφ(t)
2 + (∂tψ(t))

2)∂tX̂(t) (45)

Given the expression for φ(t) and ψ(t) and keeping only the lowest order in
A,B,X terms, and nelecting terms which have a time dependence of around
e±i2ω(t) since such a rapidly oscillating force at frequencies of 1015 would not
move the mirror at all, we get

P =
1

4

[

2
(

2
ω

2π
α(B(t) +B†(t))

)

− ω

2π
|α|24(∂tX̂)

]

(46)

Note that both the ”classical” radiation pressure due to the coherent state,
and that due to the quantum field coming in from the laser (The A,A† terms)
cancel out, leaving the quantum field coming in from the ψ port (the B,B†

terms). and the reaction force of the field back onto the oscillator, the ∂tX̂
term is a damping force on the mirror.

Note that ∂tφ(t)∂
2
t φ(t) = 1

2∂t(∂tφ(t))
2 which only has terms which go as

e±i2ωt and will have no effect on the mirror. The terms in the pressure which go
as B,B† are quantum radiation pressure terms, or fluctuating pressure forces
usually ascribed to the shot noise in the number photons hitting the mirror.
The shot noise due to quantum fluctuations in the laser cancel out, and it is
only the quantum noise coming from the dark port (the φ̃ port) that contribute
to the radiation pressure noise, and this is proportional to B(t) +B†.

The equation of motion of the mirror is then

M∂2t X̂ ≈ PA+ F (t) (47)

= A ω

2π
α((B(t) +B†(t)))− ω

2π
α2∂tX̂(t) + F (t) (48)

X̂ν =
1

−Mν2 − iνγ

(

A ω

2π

(

α(

∫

(Bν +B†
−ν)dν + Fν

))

(49)

γ = A ω

2π
α2 (50)

For reasonable powers of the laser, γ will be small (less than values ofMν for
values of ν which will be measureable. ) Thus X̂ν ≈ − 1

Mν2 (Fν+A ω
2πα(Bν+B

†
ν)

Inserting this into the output particle flux we get

NF ≈ 1

2π

(

α2ω2(x20 + 2x0X̂)− 2αx0i(B(t+ y)−B†(t+ y))
)

(51)

=
1

2π

(

α2ω2(x20 + 2x0F̂ (t)
)

(52)

6



+

[

−2α2x0A
∫

ω
(Bν +B†

−ν)

−Mν2
e−iν(t+y)dν + αx0i(Bν −B†)e−iν(t+y)dν

]

(53)

The first term in the large parentheses is a classical expression and is the
only terms remaining if the inputs into the ψ port have zero expectation value
for B (for example is the vacuum state). We thus have

NF− < NF >=

[

−2α2x20A
∫

ω(Bν +B†
−ν)

−Mν2e−iν(t+y)dν + αx0i(Bν −B†)e−iν(t+y)dν

]

(54)

and the quantum noise is

< (NF− < NF >)2 >=<

[

−2α2x20A
∫

ω
(Bν +B†

−ν)

−Mν2
e−iν(t+y)dν + αx0i(Bν −B†)e−iν(t+y)dν

]2

> (55)

Defining

Sν = −2α2x0A
ω

−Mν2
+ iαx0 (56)

we get

< (NF− < NF >)2 >= SνBν + S∗
νB

†
−ν = |Sν |(eiδνBν + e−iδνB†

−ν) (57)

If the state is a vacuum state, then

〈0|B < (NF− < NF >)2|0〉B =

∫

|Sν |2dν (58)

However, if we define a two mode squeezed state by

Bν = cosh(r)ẽiδνBν + sinh(r)e−iδν B̃†
−ν (59)

B−ν = cosh(r)eiδν B̃−ν − sinh(r)e−iδν B̃†
ν (60)

and define the squeezed vaccum by B̃ν |0〉r = B̃−ν |0〉r = 0 then

〈0|r (Bνe
iδν +B†

−ν)
2 |0〉r = e−2r (61)

and one can decrease the quantum noise by an arbitrary factor for all frequencies.
Ie, by an appropriate squeezing of the state entering into the input port of

the interferometer, one can reduce the quantum noise a much as one desires.
Since each Bν is independent of the others, this can be done independently (in
principle) at each value of ν giving a quantum noise as small as desired.

Note that δν is a function of ν (the real part of Sν dies as 1
ν2 , with respect

to the imaginary part or tan(δν) grows as ν2 The real part comes from the
radiation pressure noise, while the imaginar7y part comes from the ”shot” noise
at the readout.

Of course if < X̂2 > becomes of order x20, the linearization approximations
we made fail, and one would have to do more work.
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