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Cosmology

We will now look at the Genral Relativity which gives the solution, but the
main result is that the universe expands as a function of time. In particular
the distance between two nearby objects increases, not because they are moving
but because new space is created beteen the objects. If we use x to label the
position of ojects at rest, then the distance function between nearby objects is
given by (Pythagoras’s theorem)

ds2space = a(t)2(dx2 + dy2 + dz2) = a2(d~x · d~x). (1)

Ie, the distance between nearby objects increases as a(t). The special relativi-
tistic spacetime distance is given by

ds2 = dt2 − ds2space = dt2 − a2(d~x · d~x) (2)

The equation of motion of a scalar field is

1

a3
∂ta

3∂tφ− 1

a2
∇2φ = 0 (3)

which can be derived from a Lagrangian

L =
1

2

∫

(a3∂tφ
2 − a(∇φ · ∇φ))d3x (4)

The conjugate momentum to φ(t, x) is o

δL
δ∂tφ(t, x)

= π (5)

or

π = a3∂tφ (6)

and the Hamiltonian is

H =

∫

π∂tφd
3x− L =

1

2
(
π2

a3
+ a|∇φ|2) (7)

The Hamiltonian action is

S =

∫

π∂tφd
3x−H =

∫
[

π∂tφ− 1

2

∫

(
π2

a3
+ a∇φ · ∇φ

]

d3x (8)

The equations of motion are

∂tφ =
π

a3
(9)

∂tπ = a∇2φ (10)
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for which solutions are

φk(t, x) =
1

√
2π

3φk(t)
ei(k·x)
√

(2π)3
d3x (11)

and similarly for πk, with the time dependent equations

∂tφk =
πk

a3
(12)

∂tπk = ak2φk(t) (13)

which come from a Hamilatonian action

Hk = 1
2 (π

2
k

a3 + ak2φ2
k)

(14)

Thus we have the action for each ~k,

Sk =

∫

πk(∂tφk)−
1

2
(
π2
k

a3
+ ak2φ2

k)d
3kdt (15)

=

∫

πk(∂tφk)−
1

2

k

a
(
π2

ka2
+ ka2φ2

k)dtd
3k (16)

Comparing this for each k to the expression for the adiabatic expansion we find
that

τk =

∫

k

a
dt (17)

Ωk = ka2 (18)

We thus have

π̂k =
πk√
ka

− ȧ

a

√
kaφk (19)

φ̂k = φk

√
ka (20)

where ˙= d
dτk

and

Ĥk =
1

2
(π̂2

k + φ̂2
k(1−

ä

a
)) (21)

Now this τk depends on k and scales as k for large k.i so ä/a will scale as 1
k2

and becomes very small for large k. On the other hand for small k this will be
very large, and if ä > 0, 1 − ä/a will go negative. In that case the solution to
the equations of motion will grow or decrease exponentially, with faster growth
for smaller k in terms of τk.

The other important relation is between theˆmomentum and configurtion
and the original.

π̂k = πk/(
√
ka) + ȧ

φk√
k

(22)

φ̂k =
√
kaφk (23)
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Let us assume that we are looking at large enough k that that the k depen-
dence in Ĥ can be neglected. Then the solution for φ̂, π̂ is

φ̂k = φ̂k(0)cos(kτ̂) + π̂k(0)sin(kτ̂) (24)

π̂k = π̂k(0)cos(kτ̂) + φ̂k(0)sin(kτ̂) (25)

If a(τ) is exponential, then ä/a is constant, and the solution is exact. Since
tau =

∫

dt
a

or, dt = inta(τ)dτ , if a(τ) is exponential, a(t) must be linear in t.
Ie, for a linearly growing universe, one can solve the equation exactly.

Quantization:
Let us now quantize the field. Defining τ̂ =

∫

k
a(t)dtdt and write â(τ̂) =

a(t(τ̂)).
Let us first define the quantum fields Φ(t, x) and Π(t, x) which obey

[Φ(t, x),Π(t, x)] = iδ3(x− x′) (26)

These obey the equations

∂tΦ(t, x) =
1

a(t)3
Π(t, x) (27)

∂tΠ(t, x) = a(t)∇2Φ(t, x) (28)

Let us now look at the evolution for a very small time δt

Φ(t+ δt, x) ≈ Φ(t, x) + δt
1

a(t)3
Π(t, x) (29)

Π(t+ δt, x) ≈ Π(t, x) + a(t)∇2Φ(t, x) (30)

Now let us take the Hamiltonian diagonalisation plane wave modes, which
are defined at time t, so that

−iωkφiD~k(t)
ei

~k·~x

√

(2π)3
=

π
D~k

(t)

a(t)3
ei

~k·~x

√

(2π)3
(31)

−iωkπ(t)D~k
(t)

ei
~k·~x

√

(2π)3
= −k2a(t)φ(t)

D~k

ei
~k·~x

√

(2π)3
(32)

where the D stands for Diagonalisation. Normalising the modes with the har-
monic norm < φ′, φ >= i

2

∫

(φ′∗(t, x)π(t, x)− π′∗φ(t, x))d3x we have

ω2
k =

k2

a(t)2
(33)

π
D~k

(t) = ika(t)2φDk(t) (34)

Normalizing these modes we get

|φ
D~k

|(ka(t)2) = 1 (35)

φ
D~k

(t) =
1√
ka(t)

(36)

π
D~k

(t) = −i
√
ka(t) (37)
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Thus, the diagonalisation mode at time t+ δt is

φ
D~k

(t+ δt) =
1√

ka(t+ δt)
≈ φ

D~ka
(1− ∂ta(t)

a(t)
δt) (38)

π
D~k

(t+ δt) = π
D~k

(t)(1 +
∂ta(t)

a(t)
δt) (39)

But

−∂ta(t)

a(t)
δt)φ

D~k

ei
~k·~x

√

(2π)3
= −∂ta(t)

a(t)
δt

(

φ
D−~k

e−i~k·~x

√

(2π)3

)∗

(40)

∂ta(t)

a(t)
δt)π

D~k

ei
~k·~x

√

(2π)3
= −∂ta(t)

a(t)
δt

(

π
D−~k

e−i~k·~x

√

(2π)3

)∗

(41)

Ie, the change in the diagonalisation mode is just proportional to the complex
conjugate of the mode for −~k. Ie, it is a mode with negative norm.

Now,

A
D~k

(t+ δt) = A
D~k

− (
∂ta(t)

a(t)
δt)A†

D−~k
(42)

Ie, the vacuum of the Hamiltonian diagonalization at time (t + δt) will be a
many particle state of the Hamiltonian diagonalisation at time t.

∫

(〈0|Dt A
†

D~k
(t+ δt)A

D~k
(t+ δt) |0〉Dt d

3k (43)

= (
∂ta(t)

a
δt)2

∫

〈0|Dt AD−~k
(t)A†

D−~k
(t) |0〉Dt d

3k (44)

= (
∂ta(t)

a
δt)2

∫

d3k (45)

Ie, each mode contributes the same number of particles in that small time
interval. The total particle creation over the infinitessimal time interval δt is
therefor infinite. The vacuum state according the Hamiltonian diagonalisation
at time t contains an infinite number of particles as defined by the Hamiltonian
diagonaliation at time t+ δt no matter how small δt is.

This is clearly the wrong answer.
The effective Hamiltonian is

Hk =
1

2
(
1

a3
π2
~k
+ k2aφ2

~k
) (46)

Let us make the assymptotic transformations to the Ĥ variables and Hamilto-
nian, and time

Ĥ~k
=

1

2
(π̂2

~k
+ (1− ∂2

τk
a(τk)

a(τk)
)φ̂2

~k
) (47)
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where

τk =

∫

k

a(t)
dt (48)

a(τk) = a(t(τk)) (49)

φ̂~k(t) =
√
ka(τk)φ~k (50)

π̂~k =
1√

ka(τk)
π~k +

ȧ

a
φ̂~k (51)

We now diagonalize this Hamiltonian.

−iω̂kφ~k(τk) = π̂~k(τk) (52)

−iω̂kπ~k(τk) = −1− ä(τk)

a(τk)
φ~k(τk) (53)

(where again the τk dependence is not that of solution to the equations of
motion, but the Ĥ diagonalisation at time τk so

ω̂2
k = −(1− ä

a
) (54)

π̂~k(τk) = −i

√

(1− ä(τk)

a(τk)
φ̂~k(τk) (55)

The norm is

i

2
(φ~k(τk)

∗π~k(τk)− π~k(τk)
∗φ~k(τk) =

√

(1− ä(τk)

a(τk)
(56)

φ̂~k(τk) = (1− ä(τk)

a(τk)
)−

1

4 (57)

π̂~k(τk) = −i(1− ä(τk)

a(τk)
)+

1

4 (58)

φ~k is real, and π~k is imaginary and thus must equal −i
φ~k

to be a normalized

mode. Then

φ̂~k(τk + δτk) = φ̂~k(τ)(1 +

˙̂
φ~k
φ̂~k

δτk (59)

π̂~k = π̂~k(1−
˙̂
φ~k

φ~kδτk)
(60)

Thus we have

φ̂~k(τk + δτk) = φ̂~k(1 + ∂τk ln(φ~k)δτk) (61)

= φ̂~k(1 + ∂τk ln(φ~k)kaδt) (62)

π̂~k(τk + δτk) = π~k(τk)(1− ln(φ~k)kaδt) (63)
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Again the change (proprtional δt is the complex conjugate of the original. Thus
this part of the term will result in a Boguliubov transformation whith A~k

(t+δt)
being a combination of the annihilation and creation operators at time t + δt.
Now however, the time dependent term ä

a
scales as 1/k2, and the extra tau

derivative of this scales as 1/k3 and the square of this times kaδt scales as
1/k2. The integral of this squared goes as

∫

1/k4d3k is finite. Ie, we have
a finite number of particles created if we define particles via the Hamiltonian
diagonalisation for the Ĥ rather than the original H.

Of course Ĥ is not the real Hamiltonian, or the real energy of the system.
This whole argument, which was given by L Parker (joined later by S Fulling)

in the late 1960’s and early 1970’s raises the troublesome question– what does
one mean by particles in quantum field theory in General Relativity?

It is a problem which is still troublesome even now, 50 years later.
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