Physics 501-20
Amplifier model
Consider a linear amplifier. One would like it to act such that ®,,; = a®;,
and Il,,; = all;,. Of course for a quantum system, this would violate the
commutation relation, since

[®out (t, 1), o (t, 2")] = id(z — ') (1)

but since [®;, (¢, ), I, (¢, )] = id(z—2'), we instead would get [P oyt (t, ), Moy (t, 2')] =
ia?§(x — ). We could arrange that ®,,; = a®;, and [, = éHm, but this is
what is what is called a phase sensitive amplifier— in which one of the phases of
the field (the ®) is amplified but the conjugate is deamplified.
Going to simple oscillators, we can arrange for two oscillators @1, P1, Q2, Ps,
with Annihilation operators such that A, As such that

Ay = cosh(r)A; sinh(r) A} (2)
Ay = cosh(r) Ay sinh(r) Al (3)

Where the refer to the output, while the plain are the input. Then, if we define
a coherent state, for the first input, Ay [1)) = a [¢)) while Agy) = 0, then

(] A1 [9) = cosh(r)a @
(] Az ) = sinh(r)a” )

Thus, the expectation value of the output into the 1st channel is amplified by
cosh(r) > 1 while the output into the second channel may be an amplified ver-
sion of the input or deamplified if sinh(r) > 1 or not. Note that the expectation
value of both the Hermitian operators (A; + A} and i(A; — Al are amplified
by that same factor of cosh(r). If this can be arranged then one has a phase
insensitive amplifier. How can this be arranged?

Let us consider the following model free lagrangian.

1

£r = | [ (@ott0)? - @002 o [ (@us(e)) ~ Ouit.))?) do + 0?| (0

The second term has a minus sign, and would result in the possibility of an
infinite negative energy. We will assume that this Lagrangian is a good approx-
imation to the real Lagrangian, as long of the two fields ¢ and v are sufficiently
small. At a certain amplitude or energy, we will assume that non-linearities
ensure that the energy is eventually has a lower bound.

These are free, uncoupled fields and a single free particle modeled by ¢, Now,
at x = y = —e (where we will take € to zero ultimately) we will couple the fields
to the the free particle. Furthermore, let us assume that there is a dirichlet
mirror at at ¢ = 0 and y = 0 such that J,¢(t,0) = 0, (¢,0) = 0. The coupling
will be such that

L1 = o(t, —€) + p(t, —€)) g (7)



The equations of motion of this system are

— + X0q(t)o(z+€) =0 (8)
+10rq(t)o(y +¢) =0 (9)

—07q — B(AB(t, —€) + () = 0 (10)
9x0(t,0) =0 (11)

Ay (t,0) =0 (12)

where = 97¢ — 921 and = 97y — Opv.

The retarded solution for ¢ is

Blt,2) = olt — ) + Golt +2) + SNl ~ lr+ ) Falt+a— ) (13)

Pqt— |z +¢€) = 0.(—0q(t— |z +¢€)o(x+e) (14)
= 0t — |z —€))o?(z +€) — Oyq(t — |z + €])26(z + €]15)

where o(€) is +1 if £ > 0 and is -1 otherwise. And thus
(=07 + 00)a(t — |z + ) = —0uq(t)d(x + €
The solution for the v field is
1
bt y) = Yot —y) + ot +y) = 5u0(a(t = |y +el) +at +y—€))  (16)

and the equation for g is
Oalt) + M0G0l +0)+dolt— ) + SN2t +alt—20)  (17)
£ ot + ) + (e — ) = 2p(2a(0) +alt —20) =0 (18)

‘We now take the limit as ¢ — 0. We have

o(t,x) = do(t — x) + ¢o(t + ) + N (q(t + z)) (19)
Y(t,x) = ot — o) + o(t +x) — A\2(q(t + ) (20)

A7 a(t) + (N — p*)q(t) = —2(A0ro (t) + pditho(t)) (21)
(22)

Note that if u? > A2, the system is unstable, ¢(t) will exponentially run away
(and thus so will the output, the ¢ + xdependent parts of ¢ (t + x) and ¢(t + ),
until the neglected non-linearities take over.

Going to the Fourier transform space where the input goes as e !, we have
—w?q — iw(A\ = p?)gw = —iw(Adow + o) (23)
(24)



or

Qo = 5jiu(_§\2>\¢022) (25)
Pwin =  Pow (26)
bwout = (Pow + A(qw)) (27)
Ywin = Yow (28)
Yoour = Pow — [ (29)

(30)

Given an incoming wavepacket in the ¢ channel, ¢o(t —x) = fw>0 Q@) dy
with ay, = 0 for w < 0, in the limit as t — —oo0, so that [ ¢o(t + ) ~ Odw for
all z < 0.

Given the full Lagrangian, the conjugate momentum for ¢ will be

To(t, ) = Opp(t, &) — ANOyq(t)d(x) (31)
my(t, @) = —0ih(t, x) — pdyq(t)o(x) (32)
p(t,x) = O0rq — Ap(t, 0) — pa(t, 0) (33)

In the limit as t —+ —oo, the norm of the above mode will be
< ¢, 0 >= % (Qo(t — )" Orgo(t — x) — Oppo(t — x)" o (t — x)) dw = /wlaw\zdw >0(34)

Similary for ¥y(t) = [ Bue™'dw we get a similar expression, except, since
Ty = —Optp, the norm switches sign. Thus the w > 0 modes are negative norm
for v channel, and will thus be associated with creation operators in this 1)
input channel.

The modes in which ¢ starts off non-zero and ¢ and i ae zero will decay
exponentially for q, and will produce a single outgoing mode in the ¢ and ¥
channels. If the intial state is taken to occur for ¢ — —oo, this mode will
exponentially convert itself into outgoing modes which go off to x — oco. I will
neglect this isolated mode.

As t — oo, the incoming wavepacket will convert itself to outgoing modes.
For the outgoing modes

A w w —4

ot x) = / (aw + )\M) e~ Wt gy, (35)
Ao — (1, —

Y(t, z) = / (m —u_iwi(A’jB_ u2)) e~ ) gy (36)

To quantize the system, again the quantum operators ®, ¥, ) obey exactly
the same equation of motion. Writing in terms of the ingoing modes as t — oo,
we have

—iw(t—x)
e
/w>0 V2rw (37)
efiw(tfa:)
U, = / Bl —————dw+ HC (38)
w>0 2w



While in the limit as ¢ — oo, we have the outgoing operators

o A, e me (39)
out = wF—aw +
' w>0 V2mw
v B v HC 40
out — w  —aw +
' /w>0 V2nw (40)

From the solution to the equations, we find

20\A,, + 2uB],

A, = A, -\ e 41
—iw + (A2 — p?) (41)

—iw — A2 — 2 21
= A, BT 42
—iw+)\2—u2+ —iw + A2 — p? (42)

~ 20\A, + 2uB]
BT = Bt _rrw T AP w 43
+M—iw—|—()\2—,u2) (43)
—1 A2 2 2\

_ WA B S— (44)

—lw+ A2 —p? Y —iw 4 A2 — p?

Te, this system produces a squeezed two mode state, the two modes being in the
two ¢ and ¥ channels.
If the initial state is a vacuum state, the outgoing state is not.

=(w—w)

- Al Ap ?
0| Al A, |0) = (0| B,B!, |0) | ———— —5 | (45
(O AL 10) = (0 BBl 10| = | )

and similarly for (0| Bf B |0). There is a non-zero expecation value of the number
of particles in the final state, even if the incoming state was the vacuum.
In this case the amplification factor from ®;, to Dyt

—iw — A2 — p?
cosh(r.,) ’_MJFM (46)
2 2 2)2
_ w? 4+ (A2 + p?) (47)

w? 4 (A2 — p?)

Plotting the 10logyo(cosh(r,,)?) (the power amplifiction) vs log(w), we find
that for w < A% — p?, the amplification is relatively constant. For A2 — p? <
w < A% + p? the amplification drops at 6dB/octave, until at w > A\? + p? the
amplification is essentially unity with a log of 0.
If, on the other hand the incoming signal was in the 1 channel, but the
output is in the ¢, the power amplification is |sinh(r)|> which looks similar the
¢ channel amplification except that it keeps dropping forever by 6dB/octave.
And this is a typical op-amp amplifier curve as taken from http://www.learningaboutelectronics.com/Article
amp-specifications-full-power-bandwidth
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Figure 1: Amplifier with A2 — p? = 1 and A2 + 2 = 10000



Op Amp Gain Vs. Frequency Chart
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Figure 2: Typical Op-Amp gain vs frequency chart. Note that in this case
it would be the equivalent sending the signal into channel ¥ and reading the
output from channel ®- ie the amplification is sinh(r,)?



