
Physis 407-07VetorsLet us onsider a spae of raw points, designated usually by the symbolp. This spae has nothing else de�ned on it{ no metri, no topology. Thesepoints are supposed to represent the points in spae or in spaetime.On this spae, we an de�ne two things, urves ( whih are maps from thespae of the real numbers into the spae of points) and funtions ( whih aremaps from the spae of points into the real numbers). However, we are notgoing to be interesed in just any suh urves or funtions, but in a sublassof them, whih I will all nie urves of funtions. At present, it is unlearwhat the de�nition of nie is, however the �rst ondition we will put onthem is that if we take a nie urve, designated by (�), and a nie funtion,f(p), then the omposite funtion from real numbers to real numbers, namelyf((�)), is di�erentiable. Ie, for all � for whih the the funtion is de�ned,df((�))d� is de�ned. Of ourse this is not yet suÆient to de�ne what thesenie funtion or urves are. For example, we ould take the nie funtionsto be all funtions, and then the nie urves would have to be onstants (ie(�) = p0 a onstant point for all �). We will soon �nd that we need orde�nition of "nie" funtions to be a bit more restritive than that.However, even with this bare bones struture, we an already de�ne twodi�erent kinds of vetors, tangent vetors to a urve (�) and otangent (essentailly gradient) vetors to the funtions f(p), as little piees of the urve,and little piees of the funtions.We will say that two urves(�) and 0(�), both going through a pointp have the same tangent vetor if for all nie funtions f(p), the derivativesare the same. Ie, df((�))d� j�=�0 = df(0(�))d� j�=�00 (1)where (�0) = 0(�00) = p the point through whih both urves run.The tangent vetor to the urve I will designate by � �� �A.Similarly we an de�ne the otangent vetor orresponding to the funtionf with dfA and de�ne it suh that two funtions f and f 0 have the sameotangent vetor at the point p if and only if for all nie urves (�) going1



through the point p, df((�))d� j�=�0 = df 0((�))d� j�=�0 (2)We an represent the tangent vetor by a little arrow, whih is the urve(�) from �0 to �0+1 with the arrow head at �0+1. Usually we use "straightlines" but we have no idea yet what a "straight line" means. That takes farmore struture on the spae. At present, we an take any one of the urveswhih have the same tangent vetor to represent that tangent vetor.Similarly, we an represent the otangent vetors by "little piees of arepresentative funtion". How do we represent that? By its level surfaes.Ie, hose all points p suh that f(p) = f(p0) and all points p suh thatf(p) = f(p0) + 1 as representing the funtions with the same otangentvetor at p0.On otangent vetors, one has onept of addition. Namely if f(p) andg(p) are two funtions, then the otangent vetor to f(p) + g(p) ( whih islearly also a nie funtion) is de�ned as the sum of the otangent vetors tof and g d(f + g)A = dfA + dgA (3)Similarly we an de�ne the produt of a real number times the vetor as theotangent vetor to the funtion multiplied by that number. If the numberis r, then d(rf)A = r(dfA) (4)Both of these de�nitions are onsistant in that it does not matter whihrepresentative funtion we take suh that its otangent vetor is dfA and fordgA, the sum is the same otangent vetor.For tangent vetors we have problems. We an de�ne the a tangent vetorr times as big by de�ning the urver(�) = (�0 + 5(�� �0)) (5)where (�0) = p the point of interest, but there is no way of adding twosuh urves. If one had two urves (�) and 0(�), both going through thepoint p ( and let us assume, without loss of generality that both urves went2



through p at � = 0) that if one de�ned a urve �(�) whih was supposed tobe a representative sum of the two urves, thatdf(�(�))d� = df((�))d� + df(0(�))d� (6)for all nie f, but it is not lear that any suh � exists. In fat with a perverseenough de�nition of "nie" funtions, it need not exist.In some sense, the otangent vetors are more general than the tangentvetors.We see that there also exists a de�nition of the produt of a tangentvetor and a otangent vetor. Given a tangent vetor at a point V A and aotangent vetor WA, we an de�ne the produt V AWA asV AWA = df((�))d� (7)where f and  are hosen suh that V A = �� A andWB = dfB. (Note that thevalue of the subsript or supersript letter does not matter, it is its existenethat matters. However, sine we will be de�ning other produts of vetors,in de�ning this produt, we make sure that the subsript on the otangentvetor is the same as the supersript on the tangent vetor. )0.1 CoordinatesLet us now restrit our spae of disourse still futher. It is not lear whatthis restrition really means, but historially it has proven to be very useful.Let us assume that we an hoose, at least over a subset of the "Mani-fold" of points we are interested in looking at, N nie funtions, whih I willdesignate by fxig, where i goes from 1 to N, or sometimes from 0 to N-1.These funtions are to be suh that if we look at the set of points p whihobey the equation xi(p) = xi0 (8)for all i, where xi0 are a set of N real numbers, then there is at most onepoint p whih satis�es this in the subset of all points we are interested in. Ie,the xi an be regarded as labels for the points, with a unique label for eahpoint p in the subset. These N funtions are the oordinates for the point3



p. Note that they are arbitary, in that I have said nothing about what thesefuntions are or how they are hosen, exept that they are unique for eahpoint p.Now we plae a further restrition on our set of nie funtions. I willassume that the urve through the point p0 de�ned byxi(p) = xi(p0) for all i 6= j (9)xj(p) = xj(p0) + � (10)for spei� hoie of j, is also a nie urve. This urve, whih I ould designateby j(�) is the jth oordinate axis. The tangent vetor to this urve ( andsine it is by assumption a nie urve, it has a tangent vetor) is designatedeither by ��j A or more generally by ��xj A. Note that while it looks like apartial derivative, this is simply a symbol designating the tangent vetor tothe urve whih is the jth oordinate axis.However, if we have a funtion f(p) expressed as a funtion of the oordi-nate F (x) = f(p(x)), then the partial derivative of F is exatly the derivativeof f along the oordinate axis. Ie, �F�xi = df(i(�))d� . This is where the notationomes from.We will always assume that all of the spaes we study have suh oordi-nates, and that the de�nition of nie funtions are suh that suh oordinatesexist. If a spae has suh sets of nie funtions, mathematiians all suhspaes di�erentiable manifolds.We an now de�ne the sum of two tangent vetors. Consider two urves and 0 going through the point p0. Let us assume that for both urves(0) = 0(0) = p0. Then de�ne a new urve�(�) = P (fxi((�)) + xi(0(�))� xi(p0)g) (11)where the funtion P (fxig) is the point desigated by the set of oordinatevalues fxig. Ie, the sum urve is de�ned via the sum of the oordinates ofurves  and 0. Then the tangent vetor to � is de�ned as the sum of thetangent vetors to  and 0.The urve � learly depends not only on the urves  and 0 but alsoon the oordinates whih we have hosen. However it is possible to prove,beause of the nie properties of the oordinates, that the tangent vetor to� depends only on the tangent vetors to  and 0.4



We now have two di�erent kinds of vetors, tangent and otangent, de-�ned. ( in the older literature these are alled ontravariant and ovariantvetors). Note that while they are both vetors, they really have nothingto do with eah other. They are simply two di�erent kinds of mathematialand physial things that we an de�ne. Just as urves and funtions are twodi�erent kinds of things, whih really have little to do with eah other, so aretangent vetors (little piees of urves) and otangent vetors ( little pieesof funtions. )0.2 ComponentsGiven our oordinates, and out de�nitions of vetors, we an express thevetors in terms of eah other.Consider the funtion f(p) de�ned near the point p0. Let us de�ne anotherfuntion F(p) byF (p) = f(p0) +Xi �f(P (fxig))�xi jfxi=xi(p0)g(xi(p)� xi(p0)) (12)It is possible to show that F(p) has the same otangent vetor as f(p) hasat the point p0. Ie for all urves (�), the derivative along the urve of thesetwo funtions is the same at the point p0. This means thatdfA = dFA (13)But dFA =Xi �f(P (fxig))�xi jfxi=xi(p0)gdxiA (14)sine it is a sum with onstant oeÆients of the oordinate funtions xi(p):Thus we an writedfA =Xi �f(P (fxig))�xi jfxi=xi(p0)gdxiA (15)The oeÆients, �f(P (fxig))�xi jfxi=xi(p0)g are alled the omponents of dfA in theoordinate system fxig. 5



Similarly we an for any urve  write( �� )A =Xi dxi((�))d�  ��xi!A (16)Then the dxi((�))d� are the omponents of ( �� )A in the oordinate system fxig.Finally, we an see that ( ��xi )AdxjA = Æji (17)and thus V AWA =Xi V iWi (18)This also shows that this produt of the sums of omponents is independentof whih oordinate system one happens to have hosen, beause the left hadside was de�ned without any referene to oordinates.0.3 metriWhile the above strutures are useful, in almost all of physis, another stru-ture plays a ruial role, namely a metri. This is something whih deter-mines the size of things. The metri is de�ned as the generalisation of thedot produt of two tangent vetors. In partiular, given two tangent vetorsV A and WB ( again the value of the supersript does not matter). We thusde�ne a funtion g of the two vetorsg(V A;WB) (19)to the real numbers as the "dot produt" of two tangent vetors. We demand,primarily be analogy with the dot produt, that this metri be linear in botharguments. g(V A;WB + ZB) = g(V A;WB) + g(V A; ZB) (20)and that g be symmetrig(V A;WB) = g(WB; V A) (21)6



Now we de�ne the length squared of a vetor to be given by g(V A; V A). Thisallows us also to de�ne the dot produt in terms of lenthsg(V A;WB) = 12 �g(V A +WA; V B +WB)� g(V A; V B)� g(WA;WB)� (22)Writing V A and WB in terms of oordinates omponents, we getg(V A;WB) =Xij V iW jg( ��xi!A ; ��xj!B) �Xij V iW jgij (23)The numbers gij = g(� ��xi�A ; � ��xj �B) are alled the omponents of the met-ri in the oordinate system xj. Note again that the metri was de�nedindependent of oordinates, and thus sine the left had side is independentof oordinates, so must the sum of the right hand side be, even though thevalues of the oeÆients learly do depend on the oordinates.0.4 Length of a urveGiven a urve (�), the lenght of the urve from the point p1 = (�1) top2 = (�2) is de�ned to beZ �2�1 vuutg( ��!A ; ��!B)d� (24)= Z �2�1 vuutXij gij dxid� dxjd� d� (25)Note that beause of the square root, the right side of this equation is inde-pendent of the parameterisation � we hoose for the urve. Ie, the length isfuntion only of the urve between the two points and not of the parameter-isation one uses along the urve.Note that we will run into trouble if the expression for the length of thetangent vetor is negative, sine then the square root would be imaginary. Inthis ase one must fudge things. One usually de�nes the length of a urve bytaking the absolute value inside the square root, but this an run into troubleif the argument alters in sign along the urve. One almost always ignoressuh possibilities. One distinguishes the urves by the sign of the argumentof the square root, and keeps urves with di�erent signs separate.7



0.5 Straight LinesNow that we have a notion of length, we an disuss what we mean by astraight line. Eulid had the same problem, and he de�ned a straight line asthe shortest distane between two points. While this often works, in speialrelativity, we know that for some straight lines ( eg timelike urves) thestraight line is the longest distane between two points.Let us de�ne a family of urves, (�; �) where the � designates di�erenturves between two points, whih I will assume are always loated at �1 and�2. Let the funtion D(�) designate the distane between these two pointsalong the various urves. We will say that the urve (0; �) is a straight linebetween the two points if for all sets of urves (�; �) suh that (0; �) isthat same urve, that dD(�)d� is zero. Ie, for all sets of urves, the given urveis at a relative minimum, maximum, or inetion point. Note we will alwaysdemand that the urves be nie urves.Writing this in terms of oordinates, we have the expressiondDd� = Z �2�1 dd�vuutXij gij(xk((�; �))dxi((�; �))d� dxj((�; �))d� d� (26)De�ning S(�; �) = vuutXij gij(xk((�; �))dxi((�; �))d� dxj((�; �))d� (27)we have Z 12S Xij  Xk �gij�xk dxkd� dxid� dxjd� (28)gij d2xid�d� dxjd� gij dxid� d2xjd�d�! d� (29)Sine gij is symmetri, and sine i; j; k are just "dummy" summation vari-ables, we an rename them in the various terms to getZ 12S Xk 0�Xij �gij�xk dxkd� dxid� dxjd� (30)Xj 2gkj d2xkd�d� dxjd� 1A d� (31)8



Integrating the seond term by parts, and realling that dxid� is zero at �1 and�2 (all the urves we are omparing are supposed to go through the samepoints at their endpoints), this expression beomesZ Xk dxkd�  12S �gij�xk dxkd� dxid� dxjd� (32)� dd� " 1Sgkj dxjd� #! d� (33)Sine we said that we wanted this to be zero for all sets of urves, theonly way we an do this is if eah term multiplying any dxkd� for eah valueof k and for eah point along the urve must be zero. Otherwise one analways hoose a set of urves suh that the integral is not zero. Ie, we getthe seond order di�erential equationdd� 0� 1S Xj gkj dxjd� 1A = 12S Xij �gij�xk dxid� dxjd� (34)This is the geodesi equation.This equation and the derivation an be simpli�ed if we make a speialhoie for the parameter �. Namely, if we hoose � to be suh that S = 1, theS disappears from the above equation. This parameter is usually designatedby s. Furthermore, if we hoose this parameterisation, then we have that dd� Z Snds! j�=0 =  n Z Sn�1dSd� ds! j�=0 = n Z dSd� ds! j�=0 = 0 (35)sine along the solution urve S = 1. Ie, if we hoose our parameter �orretly (ie, to be equal to the path length), we an plae an arbitrarypower of S, and in partiular we an use n=2 to get rid of the horrible squareroot, in the variation.Thus, if we hoose this parameterization, the geodesi equation beomesdds 0�Xj gkj dxjds 1A =Xij �gij�xk dxids dxjds (36)with the additional requirement thatXij gij dxids dxjds = 1 (37)9



It is easy to show that this seond onstraint equation is onsistant with theseond order equations above.An example: Consider the metrids2 = dr2 + r2d�2 (38)Using the above we need to extremize the integraldd� Z (drds)2 + r2(d�ds)2ds = 0 (39)Let us �rst take the set of urves to be suh that d�d�=0. Then we have0 = Z 2(drds) d2rd�ds + 2rdrd� (d�ds)2ds (40)= 2 Z drd� (�d2rds2 + r(d�ds)2)ds (41)and sine drd� is arbitrary ( exept at the end points whih was why theendpoint ontributions in the integration by parts disappeared), we musthave as our �rst equation that�d2rds2 + r(d�ds)2 = 0 (42)Now hoosing the set of paths so that drd� is zero, we get0 = Z 2r2d�ds d2�ds2ds (43)= �2 Z d�d� ( dds  r2d�ds! (44)whih by the same reasoning on the arbitrariness of d�d� givesdds  r2d�ds! = 0 (45)The third equation is (drds)2 + r2(d�ds)2 = 1 (46)10



The solution is d�ds = Lr2 (47)for some onstant L and then(drds)2 = 1� L2r2 (48)whih gives s = Z drq1� L2r2 (49)s� s0 = pr2 � L2 (50)or r = q(s� s0)2 + L2 (51)Substituting into theequation for � we have� � �0 = Z L(s� s0)2 + L2ds = atan(s� s0L ) (52)Note that if we hoose s0 suh that �0 = 0, and de�nex = r os(�); y = r sin(�) (53)we have x = L; y = s� s0 (54)0.6 Inverse metriWe now have two di�erent funtions of a tangent vetor whih give a num-ber. For any tangent vetor V A, the funtion of ZB given by fV A(ZB) =g(V A; ZB). Similarly for any otangent vetor UA we have the funtion11



hUA(ZB) = ZAUA is also a funtion from the set of vetors to the real num-bers. Now, given a vetor V A one an always �nd a otangent vetor UB suhthat hUA() = fV A . To see this is most easily done using the omponents.hUA(ZB) =Xi UiZi (55)fV A(ZB) =Xi (Xj gjiV j)Zi (56)Ie, if we hoose Ui =Xj gijV j (57)we see that both funtions f and h give the same value for all values of ZA. Ie,the metri allows us to assoiate a unique otangent vetor for eah tangentvetor. Furthermore, it may allow us to assoiate a length to otangentvetors. Ie, if UA is assiated with V A an WB is assoiated with ZB we ande�ne a dot produt ~g(UA;WB) = g(V A; ZB) However, it is not true that thisde�nes a metri for all otangent vetors neessarily. If the UA assoiatedwith V A is the null vetor, when V A is not a null vetor, then there will beotangent vetors whih have no tangent vetor as their image. The easiestase to see is if the metri g is zero for all arguments. Then learly eahtangent vetor has the zero otangent vetor assoited with it and for nonon-zero otangent vetor is there any tangent vetor.In everything we do we will assume that this is not true, but rather thatfor eah otangent vetor there is a unique, non-zero tangent vetor whihgives that otangent vetor via the metri. Ie, for eah non-sero UA thereexists a unique V A suh thatUi =Xj gijV j (58)This means that there must be another set of numbers, whih I will designateby gij suh that if Ui =Xj gijV j (59)then V i =Xk gikUk (60)12



This gives that for all vetors V A, we haveV i =Xkj gikgkjV k (61)or Xkj gikgkj = Æij (62)Ie, the matrix represented by the oeÆients gik is the inverse matrix to thematrix gik.Thus the tangent metri and the otangent metri an be used to maptangent vetors to otangent vetors or otangent vetors to tangent vetors.Consider a funtion f(p) and a urve (�) suh that (�) lies entirelywithing the level surfae of f . Ie, f((�)) = f((�0)) for all �; �0. ThendfA � ���A = 0 and the tangent vetor assoiated with dfA must be perpen-diular ( have zero dot produt) with all of the tangent vetors whih liewithin the level surfae of f . This is the usual gradient vetor as an arrowthat you have learned about in previous ourse. Ie, the gradient, as a otan-gent vetor is de�ned even in the most primative struture of the theory, butthe assoiation of a tangent vetor ( an arrow) with the gradient requires theexistene of the metri.We note that this an lead to some very strange situation. We will �ndthat there exist metris ( eg the speial relativisiti metri) suh that avetor an be perpendiular to itself (ie have zero length). This means thatthe gradient vetor, regarded as an arrow, an be a tangent vetor whih lieswithin the level surfae itself. Ie, a tangent vetor an both be tangent tothe surfae (ie to a urve whih lies in the surfae) and at the same time beperpendiular to the surfae ( have zero dot produt with all tangent vetorsto the surfae).0.7 Notation:As with most physiists, I am lazy. I do not want to write additional sym-bolism when more ompat will do. Thus if a have a funtion of oordinatesf(fxig), instead of writing the partial derivative with respet to xk as �f�xk , I13



will use the more ompat notation�kf � �f�xk (63)And sometimes I will use an even more ompat notiationf;k � �kf (64)this being even simpler to write. Of ourse it an also be onfusing if you arenot used to the notation.For the metri, if we de�ne the length of a urve by s(�) we know thatthe length of a tangent vetor with omponents dxid� asdsd� =Xij gij dxid� dxjd� (65)To speify the metri we ould write out the above in detail. Sine the valueof � is irrelevant, one often simply removes all of the d� and writes the metrias ds2 =Xij gijdxidxj (66)One thing to be areful of is to remember that sine the metri is symmetri,there will be two terms multiplying eah dxidxj if i and j are not equal. Thusds2 = (1� 2Mr )du2 + 2dudr� r2(d�2 + sin(�)2d�2) (67)has omponents of the metri given byguu = (1� 2Mr ) (68)gur = gru = 1 (69)g�� = r2 (70)g�� = r2sin(�)2 (71)and all the rest of the omponents being 0. Note that gur is 1, not 2. Einsteinhimself messed up in one of his notebooks, and onfused himself for a year( thinking that the at spaetime metri in rotating oordinates was not asolution of his equations) beause he forgot this.14


