Physics 407-07
Assignment 2

1.) Consider the two dimensional flat metric
ds® = da* — dt* (1)
and the coordiante transformation

x = pcosh(7) (2)
t = psinh(7) (3)
Show that the curve p = const is a timelike curve and 7 = const a spacelike

one.
Now take the equations

x = Tsinh(Y) (4)
t =T cosh(Y) (5)

Which region of flat space-time in x, ¢ do these coordinates cover? What
are the equations of straight lines for these equations?

Consider p = pp = const so the equation of the curve parameterized by 7 is
x = po cosh(T) (6)
y = posinh(r) (7)
so the length squared of a little piece of the curve is

ds® = —(0:1)* + (0:2)* = —py < 0 (8)

so it is spacelike.
Similarly if we choose a curve with 7 = 19 = const and use p as the param-
eter, we have

ds® = —(0pt* + (0,x)* =1>0 (9)
The equations of T Y coordinates can be written as
z? —t? = T*(sinh*(Y) — cosh*(Y)) = —T? (10)

Ie, the displacement of any point in the 7" Y space from the origin is timelike.
Ie, these points cover the future and past light cone of the origin of the xy
coordinates.

- There are a very large num-
ber of ways of solving this problem of straight lines.



a)The easiest way to find the straight lines is to go to ¢t x coordinates. We
know what the solutions for straight lines here is

r — vt = x

or
T'sinh(Y) — Twcosh(T') = zo

If |v] < 1 then defining sinh(Yy) = v/v/1 — v2, we have

T'(cosh(Yp) sinh(Y) — sin(Yp) cosh(Y)) = V1 — vz

Lo

Tsinh(Y — Yp) = ——20
V1—0v2

If |v] > 1, then we can set % and
Teosh(Y — Yo) = —a2
v2—1

Finally, if |v| = 1, then
TetY = To

If we want the dependence on s, we know that
t=a(s —so)r = xo +va(s — sg)

and since (95t)? — (0sx)? = a?(1 —v?), we have a? = W (if v? # 1) and we
can substitute these into the above equations to get T and Y in terms of s.

Note that some may worry that this is "unfair”. It is not. One of the key
features of General Relativity is that if you can find a coordinate system in
which the problem is easy to solve, solve it in that coordinate system and then
transform to the coordinate system you need the solution in.

b) Solve the geodesic (straight line) equations in the coordinate system. The
straight line equations can be obtained from the metric

ds* = da? —dt* = (d(T sinh(Y"))? — (d(T cosh(Y"))?) (11)
= —dT? + T*dY? (12)
I = 6/—((8ST)2 + T?(0,Y)?ds (13)
= /2(83T + 2T (95Y)*6T — 204(T0,Y )Y (14)
from which
02T +2T(0:Y)* = 0 (15)
partialy(T?0,Y) = 0 (16)



The second is easily solved,

C

0sY = T2 (17)
where C is a constant. Substituted into the first gives
02
0T + 75 =0 (18)
Multiplying by 0,7 this is a complete derivative which has as first integral
, C?
(8,T)? — 72 =D (19)

wehre D is a constant. Defining s as the path length, this will be either +1 or
zero depending on whether the curve is a spacelike, timelike or null curve.
The solution is

Tar 2

| v 2

T =+/D(s—s9)®>+C? ,D==1 (21)
T = +/2|C|(s — so) ,D=0 (22)

The solution for Y is then

C
1 T
= =l — =in(—— D=
Y — Yo :Ctan_l(s_cso) D=1 (25)
B s—s9—C o
Y~ ¥ = 20— ) D=-1 (26)

Alternatively we rewrite the equation for T with Y as the parameter instead
of s.

c
0T = oyT0sT = 6yTﬁ

SO
((0yT)? —T*)(C
T2)2 =D
or
/ Ty
R

While this looks hard to integrate, set 7 = 1/T to get

/ dr
Vo

=Y - Y,



This gives the same solutions as before.
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Calculate the Newtonian potential gravitational potential for an infinite plane
of matter. (assume that the solution of Newton’s equations is independent of y
and z) What would Einstein’s guess at a metric for this distribution of matter
be. Compare this to the coordinates for Rindler space given above. For the
Newtonian case, does the surface p = 0 from problem 1 make any sense?
for an infinite plane of

matter,
V2p = —4nGogdx

where o is the surface density of mass in the plane.
¢ = —21Goo(|z|)

Einstein’s initial guess would have made the temporal part of the metric be
(1 — ¢)? (with c=1)

ds® = — (1 + 27Gop|z|)?dt® + (dx* + dy® + dz?) (27)

Note that this is exactly the metric for flat spacetime in the accelerated coordi-
nates above on each side of x = 0. In fact this is the form of the exact solution
of Einstein’s equations outside a flat plane of matter. It is just flat spacetime
in the accelerated coordinates

(Of course to lowest order in the potential, we would write this as

ds®> = —(1 + 4wGoyp|z|)dt* + (dz® + dy* + dz?) (28)
for small z. )
3. Consider 3 dimensional flat space in rotating coordinates
ds® = dz* + dy? — dt* (29)
First define polar spatial coordinates

x = 1 cos(d) (30)
y = rsin(f) (31)

What is the metric in this coordinate system?
Now define a new ¢ coordinate by

0=0¢—wt (32)

What is the metric in this coordinate system?

ds® = —dt* +da’ +dy® = —dt* +dr’* +r2d6? = —dt* +dr* +r* (dp—wdt)? = —dt* (1—w?r?) —2rwdpdt+dr? +rdg’



The gravitational potential would thus be (assuming wr << 1 which is the only
case here that Newtonian treatement would makde sense)

1, .
¢ = §w27‘2 (33)
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A particle at constant ¢, r goes around in circles in the z,y coordinates.
What is the gravitational potential for this particle? What are the geodesic
equations for a particle in this system of coordinates?

Consider the particle travelling along a geodesic. For small velocities of
the particle, there is an apparent force on the particle, which depends both on
position and velocity. What is that force?

The geodesic equations are

Ds((1 — w?r?)dst + wr?dsg) = 0 (34)
O%r — w?r(0st)* + 2wrdstdsp — 1(9s9)® =0 (35)
D5 (12050 — wr?dst) = 0 (36)

Trying to determine the forces is actually much harder than I thought it
was.
The first and third equations can be integrated easily to give

(1 — w?r?) st + wr*dsd = py (37)
12050 — wr?dst = py (38)
from which we get
Ost = pr — Wy (39)
050 = Ij—f + w(p: — wpg) (40)

from which we get, keeping only terms to lowest order in ds¢ and Osr

95(rds(9)) = —(po

41
r2)0sT (41)
Now to zeroth order in the velocities, i—‘é’ =05t = ﬁ SO
1
95(rds(¢)) = s (42)

The apparent force on the angular velocity is proportional to the velocity in the
radial direction. Similarly,

O2r = Wr(9,t)? + 2wrd,t0s + (050)° (43)
=7(05¢ — wdst)* = r(];—gf (44)



This one is trickier since we have to keep terms to first order in the velocities
on the right side. From the definition equation for the length, we find that

1 5 050

Ost =~ e w5 (45)
and
2
0% = r(—2 Y+ 9. (46)

sqrtl — w?r? 1—w2r2 °

The radial force has a term which is independent of the velocity, and another
which is proportional to the velocity in the ¢ direction. The velocity dependent
terms are just the Coriolis forces, while the other is the “centripetal” force.

(By ”force” I mean the right hand side of the equations—the rate of change
of physical velocity as a function of time.)

d*r
d do

4.) Equivalence Principle:

Show that the Eotvos experiment still works even if the two masses are not
the same. Ie, assume you have two objects with gravitational mass m; and
mo and inertial masses of (1 + €;)my and (1 + €2)mo hung as a torsion balance
of length L from a fibre so that if they are oriented north-south, they hang
horizontally and are oriented exactly North-south. If the support is rotated
exactly 90 degrees, find the angle with the east-west direction that the arm of
the balance hangs at, and show that this angle is proportional to €; — ;. What
is the deflection angle? (Assume that the period of torsional oscillation of the
system is T seconds and that the laboratory is located at latitude 6.) You can
assume that € is very small and keep only first order effects in e.

The key point is that the torsion bar, hanging horizontally must have the
lengths of the arms distributed so that the horizontal torque is is zero. Thus to
lowest approximation, lym1g = lameg. The vertical torque is what causes the
deflection. The centripital ”force” torque is

T = (1 + €1)my Q? Rsin(8)cos(8) — lo(1 + e2)m2Q* Rsin(f)cos(6))sin(¢) (49)
where R=radius of the earth, # is the latitude, ¢ is the angle from the NS
direction of the orientation of the balance. Now since [ym; = lams we have

T = %l1m1(61 — &) Rsin(26)sin(¢) (50)

If | =11 + 2, we have [ym; = 21 where M =m; + my. and the torque is

mimsz

T:M

I(e1 — €2)Q% Rsin(20)sin(¢) (51)




Note that there are a number of possible corrections. Because of the cen-
tripital force, the vertical is not quite the true vertical, but is corrected by that
force. Since it includes the effect of the gravitiational/inertial mass imbalance,
this result in a small correction. It would however have only a quadratic correc-
tion on €; —ey which is unmeasureable. When the balance lies NS, the centripital
accelearation on the north most mass is slightly less than on the southmost be-
cause if the bar is horizontal, the north most mass is slightly nearer the center
of the earth than the southmost. However this exerts a torque on the pendulum
which lies in the horizontal plane, and thus has no effect on the deflection.

Now when that vertical torque is present, it must be offset by a deflection
of the fibre. If the Torque constant is k, we must have

T = ko (52)
or

€1 — 62) miymms
2k M

To estimate k we note that the equation of motion of the torsion pendulum
with torsion constant k and moment of intertia I = mql3 + mol3 = ™m2]2 g

M
w:ﬁork:(%)%

If the length of the torsion bar is 1 meter, m; is approximately ms, and
approximately 1Kg, and the torsional period is 40 min, what is the value of
the deflection angle as a function of €; — e5. Assuming that the graduate stu-
dent sent into the room to measure the angles has a mass of 100Kg and is
10m from m, perpendicular to the torsion arm, what would be the deflection
caused by the student in comparison with the deflection caused the difference
in inertial /gravitational mass, if €; — €2 is 1078, .

From the above (and assuming that the experiment takes place at lattitude
45°) we have

otp = 19? Rsin(26)sin(¢) (53)

2m
86400sec
The effect of the graduate student would be:

The force on the mass he would be closest to would be GmqM,/d; while

the force on the second mass would be GmsM,/d3 but at a slight angle to the
perpendicular. The vertical torque would be

T = (e1 — €2)(.5kg) (1m)(6 - 105m)( )2 = (e1 — €2)1.6-1072 ~ 2-1071% (54)

. . mym: . d
Ty = Gmy M,/ d2l, — cos(u)Gmy M,/ (d2)? = GMg%l(l/df - W) (55)
mims 303 _ 1m)3 _
~ GM, ]1\/[ 2 ot 6.7-10 11(50Kg)(.5kg)(1.5)(10m))4 =2.5-10713 (56)

Ie, for these values, the effect of the graduate student is still significantly smaller
than the effect being measured (If one is trying to get to €¢; — ez = 10712 as



Braginsky claimed, the effect of the graduate student is larger than the effect
being measured Automated techniques which do not introduce large masses near
the torsion pendulum are needed. Note that large 10 ton trucks driving up near
the pendulum say 10m away could cause problems).



