
Physi
s 407-07Collapsing ShellWe wish to examine the metri
 of a 
ollapsing shell in General Relativity.Sin
e we do not yet have Einstein's equation there were be 
ertain features ofthe solution whi
h will have to taken on faith, or left open, one 
an determinemost of the features simply from knowing the S
hwartzs
hild solution.Sin
e we are going to want to examine the 
ollapse a
ross the futurehorizon, we want a set of 
oordinates in terms of whi
h the future horizon isa regular surfa
e. Sin
e that shell is going to be 
ollapsing in from far away,we also want a set of 
oordinates for whi
h r ! 1 is well behaved. Thissuggests using the v r 
oordinates, where we re
all thatv = t+ r� = t + r + 2M ln(r � 2M2M ) (1)where M is an integration 
onstant. We found that if we look at orbits, Mis just 
2MG is just the Neutonian gravitational mass inside the orbit. Insidethe shell sin
e there is no matter inside, we 
an thus take M = 0. Thus themetri
 inside the shell isd� 2 = dv2 � 2dvdr� r2d
2 (2)where d
2 stands for d�2 + sin2(�)d�2.Outside the shell, we assume that the shell has some mass, and thus themetri
 should be the S
hwarzs
hild with some non-zero mass. The 
oordinater is well de�ned as the 
ir
umferen
e of the sphere over 2�, both inside andoutside. However, the 
oordinate v is not well de�ned. Let us assume thatoutside there is some null 
oordinate v, su
h that the metri
 there isd� 2 = (1� 2Mr )dv2 � 2dvdr� r2d
2 (3)The shell will be falling toward the bla
k hole by assumption. It will havea traje
tory r(v) as seen from the inside and r(v) as seen from outside. Fora given point in time along the shell, whi
h is designated by v r(v) as seenfrom the inside and v r(v) as seen from outside, the 
ir
umferen
e must bethe same as seen from the inside as from the outside{ this is what a thin shellmeans. Similarly the distan
e along the inside of the shell from one time to1



the next must be the same as the distan
e along the outside. (If we look atEinstein's equations, this is a 
ondition that we not have a singularity at theshell.)Let us say that we rede�ne a new outside 
oordinate 
alled v as well, su
hthat along the surfa
e of the shell, the outside v is the same as the inside.Let us assume that v = f(v). Then the distan
e along the inside of the shellwill be d� = dv2 � dvdr(v) = dv2(1� 2drdv ) (4)while the distan
e along the outside isd� 2 = (1� 2Mr(v))dv2 � 2dvdr(v) = dv2((1� 2Mr(v))� 2 drdv) (5)Writing that outside expression in terms of v and re
alling that r(v) =r(f(v)) = r(v), we haved� 2 = dv2f 0(v)2(1� 2Mr(v))� 2dr(v(v))dv ) (6)= dv2f 0(v)2(1� 2Mr(v))� 2drdv 1f 0(v)) (7)Sin
e the v outside is supposed to be the same as the v inside, the distan
ealong the shell between two values of v outside should be the same as thedistan
e along the inside. This gives(1� 2drdv ) = f 0(v)2(1� 2Mr(v) � 2drdv 1f 0(v)) (8)or f 0(v) = drdv �q drdt 2 + (1� 2Mr )(1� 2 drdv )1� 2Mr (9)Now, for the shell 
ollapsing, drdv<0 . Also, if the shell is going to be timelike,d� 2 had better be positive, so �1 < drdv < 12 . ( drdv = �1 
orresponds to theshell travelling along the v = 
onst 
urve, ie is an ingoing light shell. )2



We want f 0(v) to be positive, sin
e in
reasing time inside should be equalto in
reasing time outside. Ie, if v in
reases, so should v. This says that weneed to take the positive sign of the square root. Note that near in�nity, theargument inside the square root be
omes (1 � drdv )2 and we have f 0(v) = 1.Ie, near in�nity, when the shell is very large, the v 
oordinate is exa
tly thesame as the v 
oordinate.Now let us look near r(v) = 2M . Expanding the square root in a taylorseries around r = 2M we havef 0(v) � drdt + ��� drdv ��� �1 + (1� 2Mr )(1�2 drdt )drdv 2 �1� 2Mr = 12 (1� 2r(v))j drdv j (10)Ie, as long as the parti
le does not stop as it gets to r = 2M , f 0(v) is aperfe
tly regular fun
tion. Ie, there is nothing about the shell as it goesthrough r = 2M , as long as it does not stop there, that is at all unusual. In-side the spa
etime is Mikowski spa
e, outside it is the massive S
hwarzs
hildspa
etime. This is essentially independent of the nature of the fun
tion r(v).Note that inside r = 2M we get an additional 
ondition, that the argu-ment of the square root has to be positive. This gives a 
ondition on r(v)i ifr(v) < 2M , namely that1� 2M r �s�(1� 2Mr )2Mr < drdv < 1� 2Mr +s�(1� 2Mr )2Mr (11)Note that r(v) is for
ed to go to zero in a �nite v if r(v) < 2M .Thus we have in this example that a 
ollapsing shell 
an go throughr = 2M with nothing unsual happening there.Alternative:Write the equation of the lo
ation of the surfa
e r as a fun
tion of �the proper time along the surfa
e. In order for the surfa
e to be a thinshell the equation of motion of the radius ( de�ned as the 
ir
umferen
e ofthe spheri
al surfa
es) must be the same as fun
tion of � , the proper timealong the surfa
e, on both sides, assuming one 
hooses the origin � = 0appropriately on both sides.Now �nd v(�) and v(�) on the two sides. De�ne a new null 
oordinateV su
h that V (�) = � along the surfa
e.Example: 3



The metri
 inside isd� 2 = dv2 � 2dvdr� r2d
2 (12)Let the equation for the surfa
e of the star be given by r = R(�) where� is the proper time along the 
urve followed by the shell. De�ning _R = dRd� .Sin
e we assume that the shell is 
ollapsing, R(�) de
eases for in
reasing� . Let us assume that ~v(�) is the equation for the 
oordinate v along thatsurfa
e as a fun
tion of � and v = ~v(�) is the equation for the null 
oordinateoutside. We have inside thatd~vd� = _R +q _R2 + 1 (13)whi
h is regular and positive.Inside we have d~vd� = _R +q _R2 + 1� eMR1� 2MRwhi
h again is regular at R(�) = 2M with valuedvdt � 12 _R (14)Note in order that the 
urve be timelike, we require that_r2 + 1� 2Mr > 0whi
h requires that as R ! 0, _R ! 1. Ie the radial proper velo
ity mustgo in�nity ( r go to zero) faster than 23(��)1=3 (3M)2=3.Now, at r = R(�) we want to de�ne the new null 
oordinate 
oordinateV su
h that V (�) = � . Then inside, v = ~v(V ), and outside v = ~v(V ). Thusthe metri
 be
omesInside: d� 2 = d~v(V )dV 2dV 2 � 2d~v(V )dV dV dr � r2d
2 (15)Outside:d� 2 = d~v(V )dV 2(1� 2Mr )dV 2 � 2d~v(V )dV dV dr � r2d
2 (16)4



Along the path r = R(V ) the two metri
s are the same (dV 2�R(V )d
2).sin
e by 
onstru
tion along that path, V is just the proper time.For v > 0 we 
an take V = v.Collapsing 
old star.For a 
old star, there is no heat pressure to hold it up. Then why does abody like the earth not 
ollapse to zero? The answer is the Pauli ex
lusionprin
iple and quantum me
hani
s. The following is a very hand wavingargument whi
h however gets the answer and the physi
s right. Let us �rstoperate in the low velo
ity, low gravity, Newtonian limit, and we will bedoing order of magnitude estimates.For a single ele
tron, with mass me, if we 
on�ne the ele
tron into asmall box with a side of length �x, then it must have an un
ertainty ofmomentum of at least �p = �h2�x . The kineti
 energy of ea
h ele
tron is thenp22me = �h22me�x2 . By the Pauli ex
lusion prin
iple, if the body of volume Vhas Ne ele
trons, and ea
h ele
tron is 
on�ned to a box of dimension �x thetotal energy will be EKE = Ne�h2�x22me (17)But ea
h ele
tron will be 
on�ned to volume of size V=Ne, or of dimensionL=N1=3 where L is the dimension of the system. Now 
osider the ele
tronsin the earth. Be
ause of the Pauli ex
lusion prin
iple, ea
h ele
tron is essen-tially 
on�ned to a volume whose size is VNe = 4�R33Ne or within a little box ofdimension �x � 2RN1=3e Thus the total kineti
 energy of the ele
trons in theearth would be EKE = N5=3e �h232meR2 (18)Assuming that there approximately as many nu
leons, Nn in the earth asele
trons, the gravitiational potential energy is approxEG = �GM22R = �GN2nm2n2R (19)whi
h gives a total energy ofE = N5=3e �h232meR2 �GN2nm2n2R (20)5



Now the earth's radius will adjust itself to minimize this energy, giving usR = N5=3eN2n �h28Gmem2n (21)(Plugging in the values for the earth, whereNe � Nn =Me=mn = 6 10241:66 10�27kg =3:6 1051, G = 6:67 10�11, �h = 10�34m2Kg=s we get very 
lose (5 107m) tothe radius of the earth. Considering our negle
t of various fa
tors (exa
tlywhat the distribution is of the mass inside the earth, that the nu
lei helpbind the ele
trons into slightly tigher orbits than is given by this, et
) this isgood agreement.Now, as N be
omes larger and larger, �x � R=N1=3 be
omes smaller andsmaller, and eventually �p be
omes relativisti
. Also, the kineti
 energy ofthe ele
trons be
omes 
omparable to the di�eren
e in binding energy betweenthe proton plus ele
tron and neutron. At that point the proton swallows theele
trons, and all one has left are neutrons.If the ele
trons really are relativisti
, then E = p
,not E = p2=2m andthe kineti
 energy be
omes EKE = N4=3e �h
4R� GM2RNote that both terms go as 1/R and thus there is no minimum. If the �rstterm is larger than the se
ond, R will in
rease until it is large enough thatthe ele
trons be
ome non-relativisti
 and one rea
hes the R of the previousanalysis. If N4=3e �h
 > 2GM2 = 2GN2nm2n (22)then the system will keep 
ollapsing until the ele
ton energy be
omes 
om-parable to the rest mass energy of the nu
leons.However, long before that, the protons and ele
trons will inverse betade
ay to neutrons. At this point the ele
tron degenera
y pressure be
omesirrelevant, and something else must hold up the system and that is the neu-tron degenera
y pressure. HOwever in either 
ase we get a maximum mass ofan obje
t whi
h 
an support itself by ele
tron degenera
y pressure, AssumingNe = 12Nn, we get Mmax = ( �h
Gm4=3n )3=2 (23)6



The term �h
G has units of mass squared and is 
alled the Plank mass squared,and the Plank mass is approximately 2:2 10�8kg. Thus,Mmax � mnm3Pm3n (24)If we took this literally, it would give us a maximum mass of about 2solar masses. Note that this does not depend on the mass of the ele
tron.In a
tual fa
t it does weakly depend on the mass of the ele
tron and themn �mp �me neutron binding energy.Now the neutrons behave the same way{ sin
e they are femions, they tooare 
on�ned to a volume of dimension RN1=3 and have a kineti
 energy, andthe above analysis goes through with me repla
ed by mn and Ne repla
ed byNn.. There are now two ways of looking at the problem.a) eventually R be
omes smaller than GM
2 . This o

urs whenN�1=3�h2Gmnm2n � GNmn=
2 (25)or M = Nmn � ( �h2
2G2m8=3n )3=4 (26)Plugging in the values for mn and the 
onstants of nature, this is very neartwo solar masses. Ie, a star larger than about one solar mass 
annot supportitself via the degenera
y pressure of its neutrons, and must 
ollapse. Detailed
al
ulations show that the exa
t limit depends on the equation of state ofnu
lear matter in the 
enter of the neutron star, the degree or rotation of thestar, but in no 
ase has a value larger than six times of the mass of the sunbeen found.Sin
e may stars have mu
h larger masses than this, and sin
e large starsburn up their nu
lear fuel faster than lower mass stars, this implies that theremust be many bla
k holes in the universe.If the gas of neutrons is hot ( or of ele
trons and nu
lei) then the additionalradiation pressure 
an help support the star, but stars eventually 
ool, andwhen they do, and their mass is larger than a few solar masses, they must
ollapse all the way to r=0. 7



b) When the neutrons be
ome relativisti
, the kineti
 energy be
omesEKE = Np
 = N �h
�x = N2=3 �h
R while the gravitational potential energy de-pends on the energy not the rest mass of the neutrons. Thus it isEG = �G(NEKE)2R
4 = �GN4=3�h2
2R3 (27)with the total energy beingE = N2=3 �h
R �GN4=3�h2
2R3 (28)This has no mimimum. It has a maximum at R � GM
2 where M = EKE
2 . Sothis relativisti
 analysis leads to the same 
on
lusionas above. Ie, on
e N islarge enough that the neutrons be
ome relativisti
, the system has no stableequilibrium, and must 
ollapse to a bla
k hole.Both arguments lead to the 
on
lusion that if the mass is larger than afew solar masses, it is impossible for the 
old star to support itself via theDegenera
y pressure, and the end result must be a bla
k hole. The 
ollapseof the matter must pro
eed to all of the matter having been 
rushed to r=0,zero volume, and in�nite density.Various more exa
t 
al
ulations, using both General relativity for the the-ory of gravity and taking a

ount of the neutron-neutron intera
tions (whi
h
an give additional pressures), say that the maximum mass of a neutron staris from about 3-6 solar masses, depending on exa
tly whi
h equation of stateis assumed.So, for a stellar 
ore less than around one solar mass, the end point ofevolution is a white dwarf, held up by its ele
trons. For a mass betweenabout 1 solar mass and 3-6 solar masses it is a neutron star, and for greatrthan 6 solar masses, the only possible endpoint must be eternal 
ollapse.
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