
Physis 407-07Collapsing ShellWe wish to examine the metri of a ollapsing shell in General Relativity.Sine we do not yet have Einstein's equation there were be ertain features ofthe solution whih will have to taken on faith, or left open, one an determinemost of the features simply from knowing the Shwartzshild solution.Sine we are going to want to examine the ollapse aross the futurehorizon, we want a set of oordinates in terms of whih the future horizon isa regular surfae. Sine that shell is going to be ollapsing in from far away,we also want a set of oordinates for whih r ! 1 is well behaved. Thissuggests using the v r oordinates, where we reall thatv = t+ r� = t + r + 2M ln(r � 2M2M ) (1)where M is an integration onstant. We found that if we look at orbits, Mis just 2MG is just the Neutonian gravitational mass inside the orbit. Insidethe shell sine there is no matter inside, we an thus take M = 0. Thus themetri inside the shell isd� 2 = dv2 � 2dvdr� r2d
2 (2)where d
2 stands for d�2 + sin2(�)d�2.Outside the shell, we assume that the shell has some mass, and thus themetri should be the Shwarzshild with some non-zero mass. The oordinater is well de�ned as the irumferene of the sphere over 2�, both inside andoutside. However, the oordinate v is not well de�ned. Let us assume thatoutside there is some null oordinate v, suh that the metri there isd� 2 = (1� 2Mr )dv2 � 2dvdr� r2d
2 (3)The shell will be falling toward the blak hole by assumption. It will havea trajetory r(v) as seen from the inside and r(v) as seen from outside. Fora given point in time along the shell, whih is designated by v r(v) as seenfrom the inside and v r(v) as seen from outside, the irumferene must bethe same as seen from the inside as from the outside{ this is what a thin shellmeans. Similarly the distane along the inside of the shell from one time to1



the next must be the same as the distane along the outside. (If we look atEinstein's equations, this is a ondition that we not have a singularity at theshell.)Let us say that we rede�ne a new outside oordinate alled v as well, suhthat along the surfae of the shell, the outside v is the same as the inside.Let us assume that v = f(v). Then the distane along the inside of the shellwill be d� = dv2 � dvdr(v) = dv2(1� 2drdv ) (4)while the distane along the outside isd� 2 = (1� 2Mr(v))dv2 � 2dvdr(v) = dv2((1� 2Mr(v))� 2 drdv) (5)Writing that outside expression in terms of v and realling that r(v) =r(f(v)) = r(v), we haved� 2 = dv2f 0(v)2(1� 2Mr(v))� 2dr(v(v))dv ) (6)= dv2f 0(v)2(1� 2Mr(v))� 2drdv 1f 0(v)) (7)Sine the v outside is supposed to be the same as the v inside, the distanealong the shell between two values of v outside should be the same as thedistane along the inside. This gives(1� 2drdv ) = f 0(v)2(1� 2Mr(v) � 2drdv 1f 0(v)) (8)or f 0(v) = drdv �q drdt 2 + (1� 2Mr )(1� 2 drdv )1� 2Mr (9)Now, for the shell ollapsing, drdv<0 . Also, if the shell is going to be timelike,d� 2 had better be positive, so �1 < drdv < 12 . ( drdv = �1 orresponds to theshell travelling along the v = onst urve, ie is an ingoing light shell. )2



We want f 0(v) to be positive, sine inreasing time inside should be equalto inreasing time outside. Ie, if v inreases, so should v. This says that weneed to take the positive sign of the square root. Note that near in�nity, theargument inside the square root beomes (1 � drdv )2 and we have f 0(v) = 1.Ie, near in�nity, when the shell is very large, the v oordinate is exatly thesame as the v oordinate.Now let us look near r(v) = 2M . Expanding the square root in a taylorseries around r = 2M we havef 0(v) � drdt + ��� drdv ��� �1 + (1� 2Mr )(1�2 drdt )drdv 2 �1� 2Mr = 12 (1� 2r(v))j drdv j (10)Ie, as long as the partile does not stop as it gets to r = 2M , f 0(v) is aperfetly regular funtion. Ie, there is nothing about the shell as it goesthrough r = 2M , as long as it does not stop there, that is at all unusual. In-side the spaetime is Mikowski spae, outside it is the massive Shwarzshildspaetime. This is essentially independent of the nature of the funtion r(v).Note that inside r = 2M we get an additional ondition, that the argu-ment of the square root has to be positive. This gives a ondition on r(v)i ifr(v) < 2M , namely that1� 2M r �s�(1� 2Mr )2Mr < drdv < 1� 2Mr +s�(1� 2Mr )2Mr (11)Note that r(v) is fored to go to zero in a �nite v if r(v) < 2M .Thus we have in this example that a ollapsing shell an go throughr = 2M with nothing unsual happening there.Alternative:Write the equation of the loation of the surfae r as a funtion of �the proper time along the surfae. In order for the surfae to be a thinshell the equation of motion of the radius ( de�ned as the irumferene ofthe spherial surfaes) must be the same as funtion of � , the proper timealong the surfae, on both sides, assuming one hooses the origin � = 0appropriately on both sides.Now �nd v(�) and v(�) on the two sides. De�ne a new null oordinateV suh that V (�) = � along the surfae.Example: 3



The metri inside isd� 2 = dv2 � 2dvdr� r2d
2 (12)Let the equation for the surfae of the star be given by r = R(�) where� is the proper time along the urve followed by the shell. De�ning _R = dRd� .Sine we assume that the shell is ollapsing, R(�) deeases for inreasing� . Let us assume that ~v(�) is the equation for the oordinate v along thatsurfae as a funtion of � and v = ~v(�) is the equation for the null oordinateoutside. We have inside thatd~vd� = _R +q _R2 + 1 (13)whih is regular and positive.Inside we have d~vd� = _R +q _R2 + 1� eMR1� 2MRwhih again is regular at R(�) = 2M with valuedvdt � 12 _R (14)Note in order that the urve be timelike, we require that_r2 + 1� 2Mr > 0whih requires that as R ! 0, _R ! 1. Ie the radial proper veloity mustgo in�nity ( r go to zero) faster than 23(��)1=3 (3M)2=3.Now, at r = R(�) we want to de�ne the new null oordinate oordinateV suh that V (�) = � . Then inside, v = ~v(V ), and outside v = ~v(V ). Thusthe metri beomesInside: d� 2 = d~v(V )dV 2dV 2 � 2d~v(V )dV dV dr � r2d
2 (15)Outside:d� 2 = d~v(V )dV 2(1� 2Mr )dV 2 � 2d~v(V )dV dV dr � r2d
2 (16)4



Along the path r = R(V ) the two metris are the same (dV 2�R(V )d
2).sine by onstrution along that path, V is just the proper time.For v > 0 we an take V = v.Collapsing old star.For a old star, there is no heat pressure to hold it up. Then why does abody like the earth not ollapse to zero? The answer is the Pauli exlusionpriniple and quantum mehanis. The following is a very hand wavingargument whih however gets the answer and the physis right. Let us �rstoperate in the low veloity, low gravity, Newtonian limit, and we will bedoing order of magnitude estimates.For a single eletron, with mass me, if we on�ne the eletron into asmall box with a side of length �x, then it must have an unertainty ofmomentum of at least �p = �h2�x . The kineti energy of eah eletron is thenp22me = �h22me�x2 . By the Pauli exlusion priniple, if the body of volume Vhas Ne eletrons, and eah eletron is on�ned to a box of dimension �x thetotal energy will be EKE = Ne�h2�x22me (17)But eah eletron will be on�ned to volume of size V=Ne, or of dimensionL=N1=3 where L is the dimension of the system. Now osider the eletronsin the earth. Beause of the Pauli exlusion priniple, eah eletron is essen-tially on�ned to a volume whose size is VNe = 4�R33Ne or within a little box ofdimension �x � 2RN1=3e Thus the total kineti energy of the eletrons in theearth would be EKE = N5=3e �h232meR2 (18)Assuming that there approximately as many nuleons, Nn in the earth aseletrons, the gravitiational potential energy is approxEG = �GM22R = �GN2nm2n2R (19)whih gives a total energy ofE = N5=3e �h232meR2 �GN2nm2n2R (20)5



Now the earth's radius will adjust itself to minimize this energy, giving usR = N5=3eN2n �h28Gmem2n (21)(Plugging in the values for the earth, whereNe � Nn =Me=mn = 6 10241:66 10�27kg =3:6 1051, G = 6:67 10�11, �h = 10�34m2Kg=s we get very lose (5 107m) tothe radius of the earth. Considering our neglet of various fators (exatlywhat the distribution is of the mass inside the earth, that the nulei helpbind the eletrons into slightly tigher orbits than is given by this, et) this isgood agreement.Now, as N beomes larger and larger, �x � R=N1=3 beomes smaller andsmaller, and eventually �p beomes relativisti. Also, the kineti energy ofthe eletrons beomes omparable to the di�erene in binding energy betweenthe proton plus eletron and neutron. At that point the proton swallows theeletrons, and all one has left are neutrons.If the eletrons really are relativisti, then E = p,not E = p2=2m andthe kineti energy beomes EKE = N4=3e �h4R� GM2RNote that both terms go as 1/R and thus there is no minimum. If the �rstterm is larger than the seond, R will inrease until it is large enough thatthe eletrons beome non-relativisti and one reahes the R of the previousanalysis. If N4=3e �h > 2GM2 = 2GN2nm2n (22)then the system will keep ollapsing until the eleton energy beomes om-parable to the rest mass energy of the nuleons.However, long before that, the protons and eletrons will inverse betadeay to neutrons. At this point the eletron degeneray pressure beomesirrelevant, and something else must hold up the system and that is the neu-tron degeneray pressure. HOwever in either ase we get a maximum mass ofan objet whih an support itself by eletron degeneray pressure, AssumingNe = 12Nn, we get Mmax = ( �hGm4=3n )3=2 (23)6



The term �hG has units of mass squared and is alled the Plank mass squared,and the Plank mass is approximately 2:2 10�8kg. Thus,Mmax � mnm3Pm3n (24)If we took this literally, it would give us a maximum mass of about 2solar masses. Note that this does not depend on the mass of the eletron.In atual fat it does weakly depend on the mass of the eletron and themn �mp �me neutron binding energy.Now the neutrons behave the same way{ sine they are femions, they tooare on�ned to a volume of dimension RN1=3 and have a kineti energy, andthe above analysis goes through with me replaed by mn and Ne replaed byNn.. There are now two ways of looking at the problem.a) eventually R beomes smaller than GM2 . This ours whenN�1=3�h2Gmnm2n � GNmn=2 (25)or M = Nmn � ( �h22G2m8=3n )3=4 (26)Plugging in the values for mn and the onstants of nature, this is very neartwo solar masses. Ie, a star larger than about one solar mass annot supportitself via the degeneray pressure of its neutrons, and must ollapse. Detailedalulations show that the exat limit depends on the equation of state ofnulear matter in the enter of the neutron star, the degree or rotation of thestar, but in no ase has a value larger than six times of the mass of the sunbeen found.Sine may stars have muh larger masses than this, and sine large starsburn up their nulear fuel faster than lower mass stars, this implies that theremust be many blak holes in the universe.If the gas of neutrons is hot ( or of eletrons and nulei) then the additionalradiation pressure an help support the star, but stars eventually ool, andwhen they do, and their mass is larger than a few solar masses, they mustollapse all the way to r=0. 7



b) When the neutrons beome relativisti, the kineti energy beomesEKE = Np = N �h�x = N2=3 �hR while the gravitational potential energy de-pends on the energy not the rest mass of the neutrons. Thus it isEG = �G(NEKE)2R4 = �GN4=3�h22R3 (27)with the total energy beingE = N2=3 �hR �GN4=3�h22R3 (28)This has no mimimum. It has a maximum at R � GM2 where M = EKE2 . Sothis relativisti analysis leads to the same onlusionas above. Ie, one N islarge enough that the neutrons beome relativisti, the system has no stableequilibrium, and must ollapse to a blak hole.Both arguments lead to the onlusion that if the mass is larger than afew solar masses, it is impossible for the old star to support itself via theDegeneray pressure, and the end result must be a blak hole. The ollapseof the matter must proeed to all of the matter having been rushed to r=0,zero volume, and in�nite density.Various more exat alulations, using both General relativity for the the-ory of gravity and taking aount of the neutron-neutron interations (whihan give additional pressures), say that the maximum mass of a neutron staris from about 3-6 solar masses, depending on exatly whih equation of stateis assumed.So, for a stellar ore less than around one solar mass, the end point ofevolution is a white dwarf, held up by its eletrons. For a mass betweenabout 1 solar mass and 3-6 solar masses it is a neutron star, and for greatrthan 6 solar masses, the only possible endpoint must be eternal ollapse.
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