Physics 407-07
Lie derivative

Lie Derivative

In addition to the so called parallel or covariant derivative, there is also
an additional concept called the Lie derivative. This derivative is more pri-
mative than the covariant derivative in that it assumes less structure on the
spacetime.

Assume that we have a series of curves which fill the spacetime. Ie,
through each point in the spacetime, there exists a curve from that series of
curves, going through that point. We can now use these series of curves to
slide the spacetime over itself and to slide any structures on the spacetime
over itself. Let us designate the curve from this series of curves going through
the point p to be designated by ~,(A\) and let the value of the parameter
lambda designating the point p to be given by A,. Ie, v,(\,) = p. Now
consider the point in the spacetime designated by 7,(A, + ). This will be a
new point in the spacetime, near the point p. Let the tangent vector to this
curve at p be %.

Now consider a function f(p). Define the Lie derivative of the function,
designated by

£ o f = lim f(Vp()‘p +¢€)) — f(p)

9vp e—0 €

(1)

We note that this is just the derivative of f along the curve v, and thus this
is just
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or in coordinates,
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Now, let us consider the derivative of the cotangent vector defined by
the function f. Ie, we want to define the derivative of the cotangent vector
£6L dfs. We do this by subtracting the cotangent vector defined by the
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draéged function

fe(p) = fmp(Ap —€)) (5)

. We now have the two cotangent vectors df 4 and (df.) 1 defined at the point
p. We can now define the derivative by

£1Ade _ elg% de(p) _ (dfe(p)) (6)
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Ie, we define this derivative by comparing the cotangent vector at the
point p with that dragged to the point p by the action of the set of curves.
Writing this in coordinate form, we have

fe(@'(p)) = (2" (N — €))) = f(a") — e’ 0, f + O(€?) (7)
The components of the cotangent vector are
(dfe(p))i = Bi(fe(p)) = Oif — e/ 0, f) (8)
and the Lie derivative then is
Lyn = 0P Oif + 17 9;(0if) (9)
Thus for a generic cotangent vector with components U; we have
£ oar Uy =070, U; + U;0i1p (10)

We can equivalently define the Lie derivative of a tangent vector by noting
that VAW, is an ordinary function, and thus

Loa VEWg = faiAviWi (11)
= (U?@'W)Wi + Vi.(ﬁjajWi) . | (12)
= (no;V' — Vfajnz)(Wi) + V’(n’ajWi + W,;0im°) (13)
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Thus we define
LaVi= o,V — VIigm' (15)
NOte that
LyaUP + £y2VE =0 (16)
The Lie derivative of the metric is given by

L0920 = 0"k gij + gx0in® + g 0in*

= 0" 0gij + Ojm; + Om; — 0" (Digr; + 0;9i)
= 0jmi + 0im; — 20" Tk

= 9jmi + Om; — 2m Tk,

Now, if the metric dragged along the curve is identical to the metric, then
this is called a symmetry of the spacetime. This means that if there exists a
vector field K# such that

£KAgBC =0 (2]‘)

then the vector field K is a symmetry of the spacetime. Such vectors are
called Killing vectors.
A spacetime can contain at most 10 linearly independent Killing vectors.
Consider the Killing equation components
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Ie the derivative of K* in the direction j can be written in terms of the
derivative the antisymmetric derivative of K and of the value of K.
We can also write the Killing equation as

0iK; = —0;K; + KT, (25)



Looking at the derivative of the antisymmetric derivative

Ok (0K — 0,K;) = 0;(0p K;) — 9;01K; (26)

= 8;0;K), — 0,0, K, + 0, 1)) — 9;(13. 1) (27)
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Ie, the derivative of the antisymmetric derivative can be expressed in
terms of derivatives of the metric times the components of the Killing vector
plus derivatives of the metric times components of the antisymmetric deriva-
tive of the Killing tensor ( since the ordinary derivative can be expressed in
terms of the antisymmetric derivative and derivatives of the metric times the
components of the Killing vector.). Te, we have an intial value equation, in
which if we specify the 4 components of the Killing vector and the six com-
ponents of the antisymmetric derivative of the Killing vector at a point, then
we can integrate them up along all of the coordinate axes, and everywhere
in the spacetime.

It is of course also required that if we integrate up the equations along
different paths, we get the same vector. This is what can reduce the number
of Killing vectors to less than 10, but there can never be more than 10.

Flat spacetime has 10.
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where the (a, b, ¢, d) means that the ¢ component is a, the x is b, the y is ¢
and the z is d.

The first four have zero antisymmetric derivatives at t = x =y = 2z = 0,
but have non-szero value for one of the components of the Killing vector at
that point. The last 6 have zero value for all components att =z =y =2z =
0, but have non-zero antisymmetric derivative there.

(NOte that any linear combination of Killing vectors with constant coef-
ficients is also a Killing vector.)



