
Physi
s 407-08Straight linesWhat is a straight line? Consider the 
at two dimensional surfa
e, withthe usual re
tilinear 
oordinates x; y. What is a straight line?One answer is y = �x+y0 to express y as a fun
tion of x, a linear fun
tionof x. But why is this a straight line? And what is a straight line?Going ba
k to Eu
lid, a straight line is the shortest distan
e between twopoints. But what is distan
e? Ie, in order to use this de�nition of a straightline, we need to know what "distan
e" means. Distan
e is a stru
ture whi
his imposed on spa
e by who knows what, but is 
ru
ial to knowing whatstraight lines are.Let us use the usual ideas of distan
e, (as developed by the Greeks 2500years ago, who probably got it from the Babylonians up to 3000 years ago),for su
h re
tilinear 
oordinates we have�l2 = �x2 +�y2 (1)as the fundamental de�nition of length in terms of x and y.

Figure 1: Re
tangular 
oordinateswhere �x and �y are little pie
es of the 
oordinates along the 
urve. Ifwe approximate the 
urve as a set of little "straight lines", then the totallength of the line is L = P�l. 1



Ie, the total length is L = Pp�x2 +�y2. Let us try to make thismore de�nite. Let us label the points along the line by �, some 
ompletelyarbitrary parameter. Then we 
an rewrite the above asL =Xs��x���2 + ��x���2�� (2)or if we take the limit as �� goes to zero, this be
omesL = Z vuut dxd�!2 +  dyd�!2d� (3)How do we look for the shortest line? Let us set up a whole sequen
e of
urves all parametrized by � and with the 
urves labelled by �. Ie, for ea
h�, the 
urve is x(�; �); y(�; �). All of these 
urves go from the �xed pointx0; y0 at parameter �0 to the �xed point x1; y1 at the parameter �1. Theparameters �1 and �2 are �xed{ they do not depend on �. (This will be sothat we do not have to worry about end points in the integration by partsbelow). The length of ea
h of these 
urves isL(�) = Z �1�0 q(��x(�; �))2 + (��y(�; �))2d� (4)We will assume that the 
urves are labelled su
h that x(�; �0) = x0; y(�; �0) =y0 and x(�; �1) = x1; y(�; �1) = y1 for all �.Now let us take the derivative:dLd� = Z �1�0 1q(��x(�; �))2 + (��y(�; �))2 (��x����x+ ��y����y)d� (5)Now you 
an do an integration-by-parts with respe
t to � to givedLd� = � Z �1�0 0��� 24 1q(��x(�; �))2 + (��y(�; �))2 (��x)35 ��x (6)+ �� 24 1q(��x(�; �))2 + (��y(�; �))2 (��y)35 ��y1A (7)2



The end-point values in the integration-by-parts are zero be
ause ��x(�; �0) =0 and similarly for all the other end point derivatives with respe
t to �.Now, in de�ning the fun
tions of x and y with respe
t to � they 
anbe 
hosen 
ompletely arbitrarily. The only way that dLd� 
an be zero for anarbitrary 
hoi
e of those fun
tions is if ea
h term is zero for all �. Let meassume that � has been 
hosen so that the desired 
urve, the straight line,o

urs for � = 0. Then the equations be
ome�� 24 1q(��x(0; �))2 + (��y(0; �))2 (��x(0; �))35 = 0 (8)�� 24 1q(��x(0; �))2 + (��y(0; �))2 (��y(0; lambda))35 = 0: (9)These equations look like a mess. However, let us rede�ne the parameter �to a parameter I will 
all ss = Z ��0 q(��x(0; �))2 + (��y(0; �))2d� (10)so 1q(��x(0; �))2 + (��y(0; �))2�� = �s (11)Furthermore writing � as a funtion of s,q(�sx(0; �(s)))2 + (�sy(0; �(s)))2 = 1 (12)[ To do this in more detail, sin
es = s(�(s)) (13)so taking the derivative with respe
t to s on both sides,1 = ��s(�)�s�(s) (14)3



by the 
hain rule, and thus ��s = 1�s� (15)Now, �� = ��s�s = q(��x(0; �))2 + (��y(0; �))2�s (16)Ie, we 
an write all of the �� by �s. . If we do this inq(��x(0; �))2 + (��y(0; �))2we �nd thatq(��x(0; �))2 + (��y(0; �))2 = q(��x(0; �))2 + (��y(0; �))2q(�sx(0; �(s)))2 + (�sy(0; �(s)))2(17)or q(�sx(0; �(s)))2 + (�sy(0; �(s)))2 = 1 (18)℄ Ie, s is the length along the 
urve to the point �. Then the equations forthe "shortest line" be
ome �2sx = 0 (19)�2sy = 0 (20)whi
h have the trivial solutionx = x0 + �s (21)y = y0 + �s (22)The above 
ondition on s be
omes �2 + �2 = 1.Clearly these solutions are what we usually 
onsider as straight lines.What have we used?1) parametrize the 
urve.2) �nding the length of the 
urve in terms of the derivatives of x and yalong the 
urve.Note that a 
riti
al part of this derivation was the use of Pythagorastheorem. The length of a little pie
e of the 
urve is equal to the sum ofsquares of the 
hanges in x and y along that little pie
e of the 
urve.4



This length fun
tion, this thing that determines the length as a fun
tionof the 
hanges in the 
oordinates, is a stru
ture 
alled the metri
. It willturn out to be the most important thing in General relativity.Polar CoordinatesThere is another popular set of 
oordinates that is often used to des
ribethe plane, namely polar 
oordinates. These are de�ned by the transformationr 
os(�) = x (23)r sin(�) = y (24)Ie, we again have two numbers, r and � to de�ne any point on the plane.We note that that there is something funny about these. At r = 0 (i.e.,x = y = 0) any value of � gives exa
tly the same point. Se
ondly, for x andy, any value of x and y designates a di�erent point in the plane. But for rand � this is no longer true. In addition to the problem at r = 0 there isanother problem in that r; � + 2� is exa
tly the same point as r; �. Ie, the
oordinate label of a point is multi-valued as far as � is 
on
erned. We 
aneither a

ept this or we 
an demand that � only take values between, say, �and �.

Figure 2: Polar 
oordinates on re
tangularLets ask about straight lines. We 
an again look at a line de�ned by a
urve r(�); �(�). Again we take a tiny part of the 
urve, with �r and ��.But now it is 
lear that the length of the 
urve is not given by�L2 = �r2 +��2 (25)5



Clearly the length of the side designated by �� has a di�erent length de-pending on the value of r.For a small enough value of Delta� and �r, thelength of the � side is r��. Ie, at large r the length of a small 
hange in ��in
reases.Thus the 
orre
t formula is�L2 = �r2 + r2��2 (26)The 
oeÆ
ients multiplying the squares of the small 
hanges in the 
oor-dinates are 
alled the metri
 
oeÆ
ients, designated bygrr = 1 (27)g�� = r2 (28)where �L2 = grr�r2 + g����2 (29)or for the 
ontinuous 
urveL = Z �1�0 qgrr (��r)2 + g�� (���)2d� (30)At this point you might wonder why I use two, apparently redundant,subs
ripts. Why not just gr and g�? This will be 
lear (I hope) below,when we �nd that sometimes the 
oeÆ
ients also 
ontain 
ross terms, andthe metri
 looks a lot like a matrix. For now just a

ept this a pe
uliarity (perversion?) of general relativists.Note that the metri
 
oeÆ
ients are in general fun
tions of the 
oordi-nates. (In this 
ase only g�� is.)Again, we 
an try to derive equations for a straight line by de�ning awhole array of 
urves labelled by �L(�) = Z �1�0 q(��r(�; �))2 + r(�; �)2 (���(�; �))2 (31)Again we 
an take the derivative with respe
t to � and do an integration-by-parts so that we only have terms like ��r and ��� without � derivatives ofthose terms. 6



We getdLd� = Z �1�0 ��r 24��� 0� 1q(��r)2 + r2(���)2��r1A+ rq(��r)2 + r2(���)2 (���)235 d�+ Z �1�0 ��� 24�� 1q(��r)2 + r2(���)2 (�r2���)35 d� (32)(where the integrals are all from�0 to �1). Again the only way that this
ould be zero for arbitrary sets of paths labelled by � is if the terms fa
torsmultiplying the derivatives with respe
t to � are zero at ea
h point. I.e.,���0� 1q(��r)2 + r2(���)2��r1A+ rq(��r)2 + r2(���)2 (���)2 = 0 (33)��0� 1q(��r)2 + r2(���)2 (�r2���)1A = 0 (34)Again, we de�ne the new parameters = Z ��0 q(��r)2 + r2(���)2d� (35)along the solution 
urve (again 
hosen to have � = 0) s again is the pathlength along the solution 
urve. Writing the equations in terms of s insteadof � we again get �2sr � r (�s�)2 = 0 (36)�s(r2�s�) = 0 (37)This set of equations is messier than is the one in x,y 
oordinates but stillsolvable. There are some tri
ks whi
h will be useful later on whi
h I mightas well introdu
e here.Integrating the se
ond equation, we getr2�s� = C (38)(remembering that both � and r are fun
tions of s.) C is just an integration
onstant. It will turn out to be plus or minus the radius of 
losest approa
hof the 
urve to r = 0. 7



At this point we 
an use a tri
k, Instead of trying to integrate the se
ondorder equation for r, we use the fa
t that sin
e s is the length, we haveds = q(�sr)2 + r2(�s�)2ds (39)or (�sr)2 + r2(�s�)2 = 1 (40)Ie, this is another non-linear di�erential equation but in terms only of the�rst derivatives. Substituting for the equation for �s� we get(�sr)2 + C2r2 = 1 (41)or Z drq1� C2r2 = Z ds (42)or de�ning z = r=C C Z r=Cr0=C zdzpz2 � 1 = s (43)�pr2 � C2 = s� sC (44)where sC is an integration 
onstant.If s � sC goes through 0, the sign sele
ted for the left hand side must
hange. Note that r 
annot be less than jCj or the square root would beimaginary. Furthermore, at s = sC , r attains that smallest value of jCj. Itis however not ne
essary that s = sC lies on the path from the intial to �nalpoint.To determine the various 
onstants of integration, we must also solve theequation for �. We haved�ds = Cr2 = C((s� sC)2 + C2) (45)from whi
h we have (� � �C) = ar
tan(s� sCC ) (46)8



As s in
reases, � in
reases if C > 0 and de
reases for C < 0.Setting Æ� = (�2 � �1)jmod2� where we take Æ� as lying between �� and�, we see that C must have the same sign as Æ� (be
ause s1 < s2). (jmod2�means that we add or subtra
t integer multiples of 2� until the answer liesin the spe
i�ed range). �C is the angle of 
losest approa
h to r = 0 of thestraight line ( ie, it is the value of � when r = jCj along the straight line. )We thus have the following equations to determine the 
onstants s
; s1,and �C . r20 � C2 = s2C (47)r21 � C2 = (s1 � sC)2 (48)�0 � �C = ar
tan(�sCC ) (49)�1 � �C = ar
tan(s1� sCC ) (50)These 
an be simpli�ed if we realise that the equations for r and � in termsof s 
an be simplied to r 
os(� � �C) = C (51)to give tan(�C) = r1 � r0r0 tan(�0)� r1 tan(�1) (52)Having determined �C we 
an determine C, sC and s1
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In�nite straight lines

Figure 3: The graph of an in�nite straight line in polar 
oordinates. The blueand red ones are parallel lines going on opposite sides of r=0 with the samevalue of jCj. The arrows indi
ate the dire
tion of travel (in
reasing s) alongthe lines.From the equation for �0� �C we see that for an in�nite straight line, sCgoes to in�nity (sin
e s0, the value at the intial point, is assumed to be 0).There is an in�nite path length from the initial point at in�nity to the pointof 
losest approa
h to r=0. Similarly s1 � sC goes to in�nity. Thus �0 � �Cgoes to �sign(C)pi=2 and �1 � �C goes to sign(C)�=2. Sin
e r is alwayspositive, 
os(� � �C) is the same sign as C Ie, for positive C the 
urve goesfrom ���C = ��=2 through � = 0 to ���C = �=2. For negative C, the 
urvegoes from � � �C = �=2 up through � � �C = � to � � �C = 3�=2 � ��=2The �gure shows two paths 
oming in from in�nity at � � ��+ :3 going ther = C = �1:5 at �C = :3 and �C = �� + :3 and then going to in�nity againat � = �=2 + :3. In one 
ase, the blue 
urve, the lines goes above the pointr = 0 for positive �, while in the other it goes below.10



Coni
al de�
it

Figure 4: The two lines of the previous �gure but now in a spa
e where theidenti�
ation is � + 2� � � � �. Again the two straight lines start out asparallel near � = 80o but on passing past r=0, they then 
ross. two straightlines going on opposite sides of r=0 always 
ross in spa
e.Sin
e the equations for r and � do not 
are about the fa
t that � + 2�is equivalent to �, we 
an ask if we 
an make di�erent identi�
ations. Eg,what would happen if we set �+2�� � to be the same as � instead? Straightlines expressed as fun
tions of r and � would be the same. However, now anytwo lines whi
h started o� as parallel but with opposite values of C wouldeventually interse
t. Ie, 
onsider two lines, the �rst with �C = �=2 and C = 1and the se
ond with �C = ��=2 and C = �1 Near � = 0 these two lines areparallel to ea
h other. However, while one goes to � = �, the other goes to� = ��. But � = �� is equivalent to the angle � = � � �.This is smaller than �, and the two lines must 
ross. There exist noparallel lines if one runs on one side of r=0 and the other on the other side.r = 0 is a singular point. 11



The point r = 0 exists, but 
learly behaves very very strangely.And there is no way to tell from the 
oordinates that there is anythingstrange at r = 0.Skew Coordinates

Figure 5: Skew 
oordinates{ green are original xy 
oordinates, while red areXY 
oordinates. Note the 
hanges in 
oordinates on a little pie
e of the 
urveare not orthogonalLet us now, instead of using polar 
oordinates, use a set of skew 
oordi-nates. In this 
ase we take the 
oordinates X; Y su
h thatX = x (53)Y = x� y (54)This set of 
oordinates is not perpendi
ular to ea
h other. The Y axis runs at45 degrees to the X axis. This would 
learly alter the Pythagorean theoremif we try to express �L in terms of �X and �Y . One way we 
an do it, isto express �x and Æy in terms of �X and �Y . Ie, if the line segment has12




oordinate 
hanges between the ends of �X; �Y , then �x = DeltaX and�y = �X ��Y . Ie,�L2 = �x2 +�y2 = 2�X2 +�Y 2 � 2�X�Y (55)Ie, we note that for these 
oordinates, the Pythagorean theorem requiresnot just the squares of the 
hanges in the 
oordinates, but also 
ross termsbetween the 
oordinates. We 
all gXX = 2 (56)gY Y = 1 (57)gXY = gY X = �1 (58)Instead of de�ning just one 
ross term in the metri
, we have de�ned two,gXY and gY X whi
h are moreover equal to ea
h other. This is so that we 
anwrite the metri
 as �L2 = Xi=X;Y Xj=X;Y gij�xi�xj (59)where xX � X and xY � Y .If we 
al
ulate the straight lines in this 
oordinate system, we get exa
tlythe same equations as in the �rst 
ased2Xds2 = 0 (60)d2Yds2 = 0 (61)with the same solutions. X = �s+X1 (62)Y = �s+ Y1 (63)(64)However in this 
ase, we have2(dXds )2 + (dYds )2 � 2dXds dYds = 1 (65)or 2�2 + �2 � 2�� = 1 (66)13


