Physics 407-08
Straight lines

What is a straight line? Consider the flat two dimensional surface, with
the usual rectilinear coordinates x, y. What is a straight line?

One answer is y = ax+1yy to express y as a function of z, a linear function
of . But why is this a straight line? And what is a straight line?

Going back to Euclid, a straight line is the shortest distance between two
points. But what is distance? Ie, in order to use this definition of a straight
line, we need to know what ”distance” means. Distance is a structure which
is imposed on space by who knows what, but is crucial to knowing what
straight lines are.

Let us use the usual ideas of distance, (as developed by the Greeks 2500
years ago, who probably got it from the Babylonians up to 3000 years ago),
for such rectilinear coordinates we have

Al? = Ax® + Ay? (1)

as the fundamental definition of length in terms of x and y.

Figure 1: Rectangular coordinates

where Az and Ay are little pieces of the coordinates along the curve. If
we approximate the curve as a set of little "straight lines”, then the total
length of the line is L = 3> Al.



le, the total length is L = > \/Az? + Ay?. Let us try to make this
more definite. Let us label the points along the line by A, some completely
arbitrary parameter. Then we can rewrite the above as

L= Z\/ ) A (2)

or if we take the limit as A\ goes to zero, this becomes

L:/\l (%): <Zi> d (3)

How do we look for the shortest line? Let us set up a whole sequence of
curves all parametrized by A and with the curves labelled by e. le, for each
¢, the curve is z(e, A), y(e,\). All of these curves go from the fixed point
To, Yo at parameter )y to the fixed point x1, y; at the parameter \;. The
parameters A\; and Ay are fixed— they do not depend on e. (This will be so
that we do not have to worry about end points in the integration by parts
below). The length of each of these curves is

A M Ona(e ) + (9ny(en 1) (4)

We will assume that the curves are labelled such that x(e, Ag) = xo, y(€, Ao) =
yo and x(e, A1) = x1, y(€, A1) = y; for all .
Now let us take the derivative:
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Now you can do an integration-by-parts with respect to A to give
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The end-point values in the integration-by-parts are zero because 0.z (€, A\g) =
0 and similarly for all the other end point derivatives with respect to e.

Now, in defining the functions of x and y with respect to e they can
be chosen completely arbitrarily. The only way that % can be zero for an
arbitrary choice of those functions is if each term is zero for all A. Let me
assume that € has been chosen so that the desired curve, the straight line,
occurs for € = 0. Then the equations become
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These equations look like a mess. However, let us redefine the parameter A
to a parameter I will call s
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s = /A: \/(6@(0, M)+ (Ohy(0, X))%dA (10)
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Furthermore writing A as a funtion of s,

O\ = 0, (11)

V(O(0.7(5)° + (@.9(0, M) = 1 (12)
[ To do this in more detail, since
s = 5(A(5)) (13)
so taking the derivative with respect to s on both sides,

1 = 0xs(A)0sA(s) (14)



by the chain rule, and thus
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Now,
Ox = Ox50, =/ (x2(0, \))? + (Day(0, \))?0, (16)

le, we can write all of the 0y by ;. . If we do this in \/(8)\33(0, A)? 4 (95y(0, 1))
we find that

V(@3(0, 1) + (0390, 1) = V(022(0. X)) + (929/(0, 1)) (0:(0, A(5)))” + (9:(0, A(5)))*(17)

or

V(0,2(0,M()))? + (8,9/(0, A(5)))* = 1 (18)

| Te, s is the length along the curve to the point A. Then the equations for
the "shortest line” become

02x =0 (19)
02y =0 (20)
which have the trivial solution
T =Ty + as (21)
Y=Y+ Os (22)

The above condition on s becomes o? + 5% = 1.

Clearly these solutions are what we usually consider as straight lines.

What have we used?

1) parametrize the curve.

2) finding the length of the curve in terms of the derivatives of z and y
along the curve.

Note that a critical part of this derivation was the use of Pythagoras
theorem. The length of a little piece of the curve is equal to the sum of
squares of the changes in x and y along that little piece of the curve.
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This length function, this thing that determines the length as a function
of the changes in the coordinates, is a structure called the metric. It will
turn out to be the most important thing in General relativity.

Polar Coordinates

There is another popular set of coordinates that is often used to describe
the plane, namely polar coordinates. These are defined by the transformation

rcos(f) =x (23)
rsin(d) =y (24)

le, we again have two numbers,  and 6 to define any point on the plane.
We note that that there is something funny about these. At r = 0 (i.e.,
x =y = 0) any value of # gives exactly the same point. Secondly, for = and
y, any value of x and y designates a different point in the plane. But for r
and # this is no longer true. In addition to the problem at r = 0 there is
another problem in that r, § + 27 is exactly the same point as r, 6. le, the
coordinate label of a point is multi-valued as far as # is concerned. We can
either accept this or we can demand that € only take values between, say, 7

and 7.

Figure 2: Polar coordinates on rectangular

Lets ask about straight lines. We can again look at a line defined by a
curve r(A), 6()\). Again we take a tiny part of the curve, with Ar and A#.
But now it is clear that the length of the curve is not given by

AL? = Ar® + AP? (25)



Clearly the length of the side designated by Af has a different length de-
pending on the value of r.For a small enough value of Deltaf and Ar, the
length of the € side is rAf. Ie, at large r the length of a small change in Af
increases.

Thus the correct formula is

AL? = Ar? + 1 Af? (26)

The coefficients multiplying the squares of the small changes in the coor-
dinates are called the metric coefficients, designated by

grr =1 (27)
goo = 1° (28)
where
AL? = g, Ar? + gpg \§* (29)
or for the continuous curve
L= A:I Vo a2 + 9o (030)%dN (30)

At this point you might wonder why I use two, apparently redundant,
subscripts.  Why not just g, and ¢gy? This will be clear (I hope) below,
when we find that sometimes the coefficients also contain cross terms, and
the metric looks a lot like a matrix. For now just accept this a peculiarity (
perversion?) of general relativists.

Note that the metric coefficients are in general functions of the coordi-
nates. (In this case only ggy is.)

Again, we can try to derive equations for a straight line by defining a
whole array of curves labelled by €

/:1 V(07 (6, M) + (e, \)2 (930(e, A))? (31)

Again we can take the derivative with respect to € and do an integration-
by-parts so that we only have terms like J.r and 0.0 without A\ derivatives of
those terms.



We get

dL AL 1 r
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(where the integrals are all fromAy to A;). Again the only way that this
could be zero for arbitrary sets of paths labelled by € is if the terms factors
multiplying the derivatives with respect to € are zero at each point. lL.e.,

—8)\ ( ! 8)\7“) +
V(0rr)2 + 12(020)? V(0ar)2 + 12(0:0)?

” (%(a r)?iﬂ(a 9)2(_%9)) -0

Again, we define the new parameter

r

(0\0)* =0  (33)

= N J@xr)? + r2(036)2 (35)

along the solution curve (again chosen to have ¢ = 0) s again is the path
length along the solution curve. Writing the equations in terms of s instead
of A we again get

r —r(9,0)° =0 (36)
8,(r?9,0) = 0 (37)

This set of equations is messier than is the one in x,y coordinates but still
solvable. There are some tricks which will be useful later on which I might
as well introduce here.

Integrating the second equation, we get

r20,0 = C (38)

(remembering that both # and r are functions of s.) C is just an integration
constant. It will turn out to be plus or minus the radius of closest approach
of the curve to r = 0.



At this point we can use a trick, Instead of trying to integrate the second
order equation for r, we use the fact that since s is the length, we have

ds = \/(B,r)? +12(9,8)?ds (39)
(0s7)* +1r%(0,0)* =1 (40)

Ie, this is another non-linear differential equation but in terms only of the
first derivatives. Substituting for the equation for 0,6 we get

CZ
(057)? + =1 (41)
or
/ \/LC? - / ds (42)
-5
or defining z = r/C
r/C
ol (43)

ro/C /2% — 1
tvr2—-C?=s5—s¢ (44)

where s¢ is an integration constant.

If s — s goes through 0, the sign selected for the left hand side must
change. Note that r cannot be less than |C| or the square root would be
imaginary. Furthermore, at s = s¢, r attains that smallest value of |C|. It
is however not necessary that s = s¢ lies on the path from the intial to final
point.

To determine the various constants of integration, we must also solve the
equation for . We have

g C C

&7 (5=s0)P+0?) (45)

from which we have
S — S¢

o)

(0 — 0c) = arctan( (46)



As s increases, f increases if C' > 0 and decreases for C' < 0.

Setting d6 = (62 — 01)|moa2r Where we take 06 as lying between —m and
7, we see that C' must have the same sign as 60 (because s; < $3). (|modor
means that we add or subtract integer multiples of 27 until the answer lies
in the specified range). ¢ is the angle of closest approach to r = 0 of the
straight line ( ie, it is the value of # when r = |C| along the straight line. )

We thus have the following equations to determine the constants s., s,
and O¢.

re — C* = 8%, (47)

r? — C?% = (51 — s¢)* (48)

O — O = arctan(—%) (49)

0, — Oc = arctan(S1 ;SC) (50)

These can be simplified if we realise that the equations for r and € in terms
of s can be simplied to

rcos(@ —0c) =C (51)

to give

' —To
To tan(@o) — T tan(@l)

tan(0c) = (52)

Having determined 6. we can determine C', s¢ and s



Infinite straight lines

Figure 3: The graph of an infinite straight line in polar coordinates. The blue
and red ones are parallel lines going on opposite sides of r=0 with the same
value of |C|. The arrows indicate the direction of travel (increasing s) along
the lines.

From the equation for #; — 6 we see that for an infinite straight line, s¢
goes to infinity (since sg, the value at the intial point, is assumed to be 0).
There is an infinite path length from the initial point at infinity to the point
of closest approach to r=0. Similarly s; — s¢ goes to infinity. Thus 6y — 0¢
goes to —sign(C)pi/2 and 6, — Oc goes to sign(C)m/2. Since r is always
positive, cos(f — 0¢) is the same sign as C' le, for positive C' the curve goes
from 6 —60c = —m /2 through # = 0 to #—60c = 7 /2. For negative C, the curve
goes from 6 — 6o = 7/2 up through 6 — 0o = 7 to 0 — 0o = 31/2 = —7/2
The figure shows two paths coming in from infinity at 6 ~ —mn + .3 going the
r=C==15at 0c = .3 and fc = —7 + .3 and then going to infinity again
at # = 7/2 4 .3. In one case, the blue curve, the lines goes above the point
r = 0 for positive #, while in the other it goes below.
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Conical deficit

Figure 4: The two lines of the previous figure but now in a space where the
tdentification is 0 + 2w — € = 0. Again the two straight lines start out as
parallel near @ = 80° but on passing past r=0, they then cross. two straight
lines going on opposite sides of =0 always cross in space.

Since the equations for r and € do not care about the fact that 6 4+ 27
is equivalent to #, we can ask if we can make different identifications. Eg,
what would happen if we set 6 + 27 — € to be the same as 6 instead? Straight
lines expressed as functions of r and 6 would be the same. However, now any
two lines which started off as parallel but with opposite values of C would
eventually intersect. Ie, consider two lines, the first with ¢ = 7/2 and C =1
and the second with ¢ = —7/2 and C' = —1 Near 6 = 0 these two lines are
parallel to each other. However, while one goes to # = 7, the other goes to
0 = —m. But § = —7 is equivalent to the angle § =7 — e.

This is smaller than 7, and the two lines must cross. There exist no
parallel lines if one runs on one side of r=0 and the other on the other side.
r = 0 is a singular point.
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The point r = 0 exists, but clearly behaves very very strangely.

And there is no way to tell from the coordinates that there is anything
strange at 7 = 0.

Skew Coordinates

>
>

Figure 5: Skew coordinates— green are original xy coordinates, while red are
XY coordinates. Note the changes in coordinates on a little piece of the curve
are not orthogonal

Let us now, instead of using polar coordinates, use a set of skew coordi-
nates. In this case we take the coordinates X, Y such that

X =z (53)

Y=2—-y (54)

This set of coordinates is not perpendicular to each other. The Y axis runs at
45 degrees to the X axis. This would clearly alter the Pythagorean theorem

if we try to express AL in terms of AX and AY. One way we can do it, is
to express Ax and dy in terms of AX and AY. le, if the line segment has
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coordinate changes between the ends of AX, AY', then Ax = DeltaX and
Ay = AX — AY. Ie,

AL? = Az? + Ay? = 2AX% + AY? - 2AXAY (55)

le, we note that for these coordinates, the Pythagorean theorem requires
not just the squares of the changes in the coordinates, but also cross terms
between the coordinates. We call

Ixx =2 (56)
gyy =1 (57)
gxy = gyx = —1 (58)

Instead of defining just one cross term in the metric, we have defined two,
gxy and gy x which are moreover equal to each other. This is so that we can
write the metric as

AL = Y Y g AztAd (59)
i=X,Y j=X,Y
where ¥ = X and 2V =Y.
If we calculate the straight lines in this coordinate system, we get exactly
the same equations as in the first case

d*X
? =0 (60)

ary
i 0 (61)

with the same solutions.

X=as+X; (62)
Y=08s+Y, (63)
(64)

However in this case, we have

dX ., Y., _dXdY

2(@)2 + (E)2 - 2@@ =1 (65)

or

20 4+ 3% =208 =1 (66)
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