Physics 407-09
Assignment 6

1) Show that the vectors K_{1}^{A} and K_{2}^{A} with components

$$
\begin{array}{r}
K_{1}^{t}=K_{1}^{r}=0 \\
K_{1}^{\theta}=\cos (\phi) \\
K_{1}^{\phi}=-\sin (\phi) \cot (\theta) \tag{3}
\end{array}
$$

and

$$
\begin{array}{r}
K_{2}^{t}=K_{2}^{r}=0 \\
K_{2}^{\theta}=\sin (\phi) \\
K_{2}^{\phi}=\cos (\phi) \cot (\theta) \tag{6}
\end{array}
$$

are Killing vectors of the two dimensional metric

$$
d s^{2}=d \theta^{2}+\sin (\text { theta })^{2} d \phi^{2}
$$

- (Of course the Killing vectors are actually two dimensional, so there actually are no tor r components.)

The equation for a Killing vector is

$$
\begin{equation*}
K^{k} \partial_{k} g_{i j}+g_{k j} \partial_{i} K^{k}+g_{i k} \partial_{j} K^{k} \tag{7}
\end{equation*}
$$

(using the summantion convention) Thus

$$
\begin{equation*}
K^{\theta} \partial_{\theta} g_{i j}+g_{\theta j} \partial_{i} K^{\theta}+g_{\phi j} \partial_{i} K^{\phi}+g_{i \theta} \partial_{j} K^{\theta}+g_{i \phi} \partial_{j} K^{\phi} \tag{8}
\end{equation*}
$$

Now, the only derivaties of K are with respect to θ or ϕ, and the only terms in g which are dependent on θ or ϕ is $g_{\phi \phi}$.

Also g is diagonal. The only terms which are nonzero are where i, j are θ, ϕ. (The first term is non=zero only if $i j$ are both ϕ. the second is always zero.Thus, the

$$
\begin{align*}
& \theta \theta \tag{9}\\
& 2 g_{\theta \theta} \partial_{\theta} K^{\theta}=0 \tag{10}\\
& \theta \phi \tag{11}\\
& g_{\phi \phi} \partial_{\theta} K^{\phi}+g_{\theta \theta} \partial_{\phi} K^{\theta} \tag{12}\\
& \phi \phi \tag{13}\\
& K^{\theta} \partial_{\theta} g_{\phi \phi}+2 g_{\phi \phi} \partial_{\phi} K^{\phi} \tag{14}
\end{align*}
$$

Each of these is zero.
$* 8$

Show that the Lie derivative of K_{1}^{A} by K_{2}^{A} is the third rotational Killing vector whose ϕ component is 1 and others are zero.

$$
\begin{equation*}
\left(£_{K_{1}} K_{2}\right)^{i}=K_{1}^{\theta} \partial_{\theta} K_{2}^{i}+K_{1}^{\phi} \partial_{\phi} K_{2}^{i}-K_{2}^{\theta} \partial_{\theta} K_{1}^{i}+K_{2}^{\phi} \partial_{\phi} K_{1}^{i} \tag{15}
\end{equation*}
$$

The components are

$$
\begin{align*}
& \theta \tag{16}\\
& K_{1}^{\theta} \partial_{\theta} K_{2}^{\theta}+K_{1}^{\phi} \partial_{\phi} K_{2}^{\theta}-K_{2}^{\theta} \partial_{\theta} K_{1}^{\theta}-K_{2}^{\phi} \partial_{\phi} K_{1}^{\theta} \tag{17}\\
& =K_{1}^{\phi} \partial_{\phi} K_{2}^{\theta}-K_{2}^{\phi} \partial_{\phi} K_{1}^{\theta}=0 \tag{18}\\
& \phi \tag{19}\\
& K_{1}^{\theta} \partial_{\theta} K_{2}^{\phi}+K_{1}^{\phi} \partial_{\phi} K_{2}^{\phi}-K_{2}^{\theta} \partial_{\theta} K_{1}^{\phi}-K_{2}^{\phi} \partial_{\phi} K_{1}^{\phi} \tag{20}\\
& =\cos (\phi)\left(\cos (\phi) \frac{-1}{\sin ^{2}(\theta)}+(-\sin (\phi)) \cot ^{2}(\theta)(-\sin (\phi))\right. \tag{21}\\
& \quad-\sin (\phi)\left(-\sin (\phi) \frac{-1}{\sin ^{2}(\theta)}+\cos ^{2}(\phi) \cot ^{2}(\theta)=-1\right. \tag{22}
\end{align*}
$$

2.a) Find the radial geodesic equations for light emitted from $\mathrm{r}=0$ at $t=t_{1}$ and absorbed at $r=R$ at time $t=t 2$ in the standard t, r, θ, ϕ coordinates for the homogeneous and isotropic cosmological spacetimes.

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(d r^{2}+r^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right)\right)
$$

Assume $\theta=\pi / 2$. Given a divergence $\delta \phi$ in two light rays from the source, what is the spatial distance between them at $t=t_{2}$ and $r=R$. Assume that the light is emitted uniformly from the star at $r=0, t=t_{1}$, how does the intensity of the light drop off as a function of R ? (If N photons per second are emitted uniformly in direction from the star at time t_{1} how many of them will cross a unit area in unit time at $t=t_{2}$ and $r=R$?)

$$
\begin{align*}
& -2 \frac{d}{d s}\left(a^{2} r^{2} \sin ^{2}(\theta) \frac{d \phi}{d s}\right)=0 \tag{23}\\
& -2 \frac{d}{d s}\left(a^{2} r^{2} \frac{d \theta}{d s}\right)+2 a^{2} r^{2} \sin (\theta) \cos (\theta)\left(\frac{d \phi}{d s}\right)^{2}=0 \tag{24}\\
& -2 \frac{d}{d s}\left(\frac{1}{1-k r^{2}} \frac{d r}{d s}+2 a^{2} r\left(\frac{d \theta^{2}}{d s}+\sin ^{2}(\theta) \frac{d \phi^{2}}{d s}\right)=0\right. \tag{25}\\
& 2 \frac{d^{2} t}{d s^{2}}+2 a \frac{d a}{d t}\left(\frac{1}{1-k r^{2}} \frac{d r^{2}}{d s}+r^{2} \frac{d \theta^{2}}{d s}+r^{2} \sin (\theta)^{2} \frac{2 \phi^{2}}{d s}\right) \tag{26}
\end{align*}
$$

The first equation gives

$$
\begin{equation*}
\frac{d \phi}{d s}=\frac{l}{a^{2} r^{2}} \tag{27}
\end{equation*}
$$

Substituting into the second one, multiplying by $a^{2} r^{2}$, and defining defining $\lambda=\frac{d s}{a^{2} r^{2}}$ we have have

$$
\begin{align*}
& \frac{d^{2} \theta}{d \lambda^{2}}-\frac{l^{2} \cos (\theta)}{\sin (\theta)^{3}}=0 \tag{28}\\
& \text { or multiplying by } \frac{d \theta}{d \lambda} \tag{29}\\
& \frac{d \theta^{2}}{d \lambda}+\frac{l^{2}}{\sin (\theta)^{2}}=L^{2} \tag{30}\\
& \text { or } \tag{31}\\
& r^{2} a^{2} \frac{d \theta^{2}}{d s}=\frac{L^{2}}{a^{2} r^{2}}-\frac{l^{2}}{a^{2} r^{2} \sin (\theta)^{2}} \tag{32}
\end{align*}
$$

In the same way, substituting the above into the r equation, and choosing $\mu=$ $\int \frac{d t}{a^{2}}$ as the independent variable, we finally get

$$
\begin{equation*}
\frac{a^{2}}{1-k r^{2}} \frac{d r^{2}}{d s}+\frac{L^{2}}{a^{2} r^{2}}=K^{2} \tag{33}
\end{equation*}
$$

where K is a constant. We note that in order that r go to zero, we must have $\mathrm{L}=0$, or the second term on the left will always dominate and be larger than K^{2} before r gets to 0 .

If we choose $\mathrm{L}=0$, then the equation for the null geodesic is

$$
\begin{align*}
& 0=\frac{d t^{2}}{d s}-\frac{a^{2}}{1-k r^{2}} d r^{2} \tag{34}\\
& \text { or } \tag{35}\\
& \frac{d r}{d t}=\frac{\sqrt{1-k r^{2}}}{a} \tag{36}\\
& \text { or } \tag{37}\\
& \int_{0}^{R} \frac{d r}{1-k r^{2}}=\int_{t_{1}}^{t_{2}} \frac{d t}{a(t)} \tag{38}
\end{align*}
$$

where t_{1} is the time the light ray leaves from $r=0$ and t_{2} when it arrives at $r=R$.

If we assume another null ray leaves at $t_{1}+\Delta t$ where Δt is very small, and arrives at $t_{2}+\delta t$, then we have

$$
\begin{equation*}
\int_{0}^{R} \frac{d r}{1-k r^{2}}=\int_{t_{1}+\Delta t}^{t_{2}+\delta t} \frac{d t}{a(t)} \tag{39}
\end{equation*}
$$

Keeping only to lowest order in Δt and δt we finally get

$$
\begin{equation*}
\frac{\delta t}{a\left(t_{2}\right)}-\frac{\Delta t}{a\left(t_{1}\right)}=0 \tag{40}
\end{equation*}
$$

Or

$$
\begin{equation*}
\text { deltat }=\frac{a\left(t_{2}\right)}{a\left(t_{1}\right)} \Delta t \tag{41}
\end{equation*}
$$

This is the cosmological redshift.
If we assume that a particle leaves from $\mathrm{r}=0$ at angles θ, ϕ those angles remain constant. Thus if there are N particles within some solid angle, there will be N particles always withing that solid angle. The area designatied by that solid angle with angles $\delta \theta, \delta \phi$ will be the proper distances corresponding to those angles- namely

$$
\begin{equation*}
\Delta A=(\operatorname{ar} \delta \theta)(\operatorname{ar} \sin (\theta) \delta \phi \tag{42}
\end{equation*}
$$

. Ie, the surface density of those particles will be $N / \Delta A$ Since $\delta \theta, \delta \phi, \theta$ all remain consant, the density scales as $\frac{1}{a(t) r}$. If the density at a unit distance from the source is ρ_{1} (ie $a\left(t_{1}\right) r=1$, then the density at the observation point R at time t_{2} is $\frac{\rho_{1}}{\left(a\left(t_{2}\right) R\right)^{2}}$. Note that this is not just the distance from the star squared if the spatial metric is not flat, since the spatial distance is $a(t) \int_{0}^{R} \frac{d r}{1-k r^{2}}$
$* *$
b) Show that the curve $\mathrm{r}=0$ is a timelike geodesic.

From a) $\mathrm{L}=\mathrm{l}=\mathrm{K}=0$ is a valid geodesic. But these imply that Θ, ϕ, r are all constants is a geodesic. Since only $\frac{d t}{d s}$ is non-zero, the length squared of the tangent vector is negative (ie it is a timelike geodesic).

3.Consider a flat, dust filled universe, for which $a(t)=a_{0} t^{2 / 3}$. Write the metric in terms of the area coordinate R defined so that the angular part of the metric is $R^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right)$, and t , the normal cosmological time.

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin (\theta)^{2} d \phi^{2}\right)
$$

The circumference of the circle at $r, \theta=\pi / 2$, is $2 \pi a(t) r$. Choosing $R=a(t) r$, or $\frac{r=R}{a(t)}$ we get

$$
\begin{align*}
& d s^{2}=-d t^{2}+a^{2}\left(d\left(\frac{R}{a}\right)^{2}+R^{2} d \theta^{2}+R^{2} \sin (\theta)^{2} d \phi^{2}\right. \tag{43}\\
& =-d t^{2}+a^{2}\left(\frac{d R}{a}-R \frac{\dot{a}}{a^{2}} d t\right)^{2}+R^{2} \sin (\theta)^{2} d \phi^{2} \tag{44}\\
& =-\left(1-H^{2} R^{2}\right) d t^{2}-2 H R d R d t+d R^{2}+R^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right) \tag{45}
\end{align*}
$$

where $H=H(t)=\frac{d \ln (a(t)}{d t}$ If $a=a_{0} t^{2 / 3}$, then $H=\frac{2}{3 t}$.
As an interesting aside, if $a=a_{0} e^{H} t$, with H a constant, we can define a new t coordinate by

$$
\begin{equation*}
d s^{2}=-\left(1-H^{2} R^{2}\right)\left(d t^{2}+2 \frac{H R}{1-H^{2} R^{2}} d t d R\right)+d R^{2} \tag{46}
\end{equation*}
$$

$$
\begin{align*}
& +R^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right) \tag{47}\\
=-(1- & \left.H^{2} R^{2}\right)\left(d t+\frac{H R}{1-H^{2} R^{2}} d R\right)^{2}+\left(1+\frac{H^{2} R^{2}}{1-H^{2} R^{2}}\right) d R^{2} \tag{48}\\
& +R^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right) \tag{49}
\end{align*}
$$

Defining $\tau=t-\int \frac{H R}{1-H^{2} R^{2}} d R$, we finally have

$$
\begin{equation*}
d s^{2}=-\left(1-H^{2} R^{2}\right) d \tau^{2}+\frac{1}{1-H^{2} R^{2}} d R^{2}+R^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right) \tag{50}
\end{equation*}
$$

Note that this has the same form as the Schwartzschild metric, with a singularity at $R=\frac{1}{H}$. This metric (with H constant) is DeSitter spacetime and the singular surface is the cosmological horizon. Note again that this horizon is a coordinate singularity.
$* *$

