Physics 407-09
Assignment 6

1) Show that the vectors K{* and K34' with components

K=K =0 (1)
K = cos(¢) (2)
K? = —sin(¢) cot(8) (3)
and
K{=K5 =0 (4)
K¢ =sin() (5)

K$ = cos(¢) cot(h)

—
D
=

are Killing vectors of the two dimensional metric

ds® = df* + sin(theta)*d¢?

- (Of course the Killing vectors are ac-
tually two dimensional, so there actually are no t or r components. )
The equation for a Killing vector is

K’“@,cgij + gkjaiKk + gikaij (7)
(using the summantion convention) Thus
K%9gi; + 90;0iK® + g4;0: K% + gi90; K + 9190, K® (8)

Now, the only derivaties of K are with respect to 8 or ¢, and the only terms in
g which are dependent on 6 or ¢ is gge.

Also ¢ is diagonal. The only terms which are nonzero are where i, j are
0, ¢. (The first term is non=zero only if ij are both ¢. the second is always
zero.Thus, the

66 (9)
290909 K" =0 (10)
¢ (11)
95600 K? + gppOp K* (12)
ol (13)
K%99g4p + 295505 K° (14)

Each of these is zero.
T



Show that the Lie derivative of K{* by K3' is the third rotational Killing
vector whose ¢ component is 1 and others are zero.

(£5,K>)' = K{ 0K} + K{0,K5 — K30y K} + K§0, K| (15)
The components are
9 (16)
KYOKS + K0, KY — K§9yK? — K$0,K? (17)
= KP9sK) — KJ9,K! =0 (18)
¢ (19)
KYOyK$ + KPO,KS — KS0yK? — KS9sK? (20)
= 608(¢)(608(¢)ﬁ21(9) + (—sin(¢))cot® (8) (—sin(¢)) (21)
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+ cos?(¢)cot? () = —1 (22)

2.a) Find the radial geodesic equations for light emitted from r=0 at ¢ = ¢;
and absorbed at r = R at time ¢t = ¢2 in the standard ¢,r,0, ¢ coordinates for
the homogeneous and isotropic cosmological spacetimes.

ds® = —dt* + a(t)*(dr® + r*(d§” + sin(0)*d¢?))

Assume 0 = 7/2. Given a divergence d¢ in two light rays from the source, what
is the spatial distance between them at t = t; and r = R. Assume that the
light is emitted uniformly from the star at r = 0, ¢ = t1, how does the intensity
of the light drop off as a function of R? (If N photons per second are emitted
uniformly in direction from the star at time ¢; how many of them will cross a
unit area in unit time at ¢t = ¢t and r = R?)

—2%(a2r2sin2(0)£) =0 (23)

—2%((127”23—?) + 2a*r? sin(#) (:05((9)(%)2 =0 (24)

- %(1_—1]””2% + 2a2r(%2 + sin2(0)%2) =0 (25)

23—22 + Qa%(ﬁgz 7"2%2 + rzsin(0)2%2) (26)
The first equation gives



Substituting into the second one, multiplying by a?r?, and defining defining
A= aéi% we have have

d*0  [2cos(6)

A2 sin(9)3 =0 (28)
or multiplying byg—A (29)
2
% + ﬁ =17 (30)
or (31)
2
T2a2% - as; - a27“2$li2n(0)2 (32)

In the same way, substituting the above into the r equation,and choosing p =
J 4 a5 the independent variable, we finally get

a2

a? dr? L?
1—kr2ds a?r?

= K? (33)

where K is a constant. We note that in order that r go to zero, we must have
L=0, or the second term on the left will always dominate and be larger than
K? before r gets to 0.

If we choose L=0, then the equation for the null geodesic is

dt? a? ‘

Tds  1- k2 ar* (34)
or (35)
& T=R?

TS e (36)
or (37)

/R dr _/tzi (38)
o 1—Fkr2  J, a(®)

where t; is the time the light ray leaves from r = 0 and ¢, when it arrives at
r=R.

If we assume another null ray leaves at t; + At where At is very small, and
arrives at to + dt, then we have

R to+6t
dr 2 dt
[ 5= (39)
0 r ti+At (t)

Keeping only to lowest order in At and 6t we finally get

ot At
a(tz)  a(tr)

=0 (40)



or

dettat = W) py (41)

This is the cosmological redshift.

If we assume that a particle leaves from r=0 at angles 8, ¢ those angles
remain constant. Thus if there are N particles within some solid angle, there
will be N particles always withing that solid angle. The area designatied by
that solid angle with angles 66, d¢ will be the proper distances corresponding
to those angles— namely

AA = (ardf)(arsin(f)dp (42)

. Ie, the surface density of those particles will be N/AA Since §6, d¢, 6 all
remain consant, the density scales as ﬁ If the density at a unit distance
from the source is p; (ie a(t1)r = 1, then the density at the observation point
R at time t, is (a(tZW' Note that this is not just the distance from the star

dr
1—kr?

. - - . s . R
squared if the spatial metric is not flat, since the spatial distance is a(t) fo
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b) Show that the curve r=0 is a timelike geodesic.

From a) L=1=K=0 is a valid geodesic. But these imply that ©, ¢, r are
all constants is a geodesic. Since only % is non-zero, the length squared of the

tangent vector is negative ( ie it is a timelike geodesic).
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3.Consider a flat, dust filled universe, for which a(t) = agt*/®. Write the
metric in terms of the area coordinate R defined so that the angular part of the
metric is R%(df? + sin(6)?d¢?), and t, the normal cosmological time.

ds? = —dt* + a(t)*(dr® + r2d6” + r2sin(9)*dg?)

The circumference of the circle at r, 8 = 7/2, is 2ma(t)r. Choosing R = a(t)r,

or ';ﬁ we get

ds® = —dt* + a2(d(§)2 + R*d0* + R*sin(0)*d¢? (43)

= —dt* + ﬁ(ﬁ — R—dt)? + R*sin(0)*do’ (44)
a a
= —(1 — H’R?)dt* — 2HRARdt + dR* + R*(d6” + sin(0)*d¢”) (45)

where H = H(t) = Y200 1f ¢ — 45¢2/3, then H = 2.

As an interesting aside, if a = age’t, with H a constant, we can define a
new t coordinate by

ds®> = —(1 — H?R?)(dt® + 2 dtdR) + dR? (46)

1—- H2R?



+R2(d6? + sin(6)*d?) (47)

HR H?R?
(1 _ m2p2 2 2
=—(1 HR)(dt+1_ 55 AR) +(1+1_ sos AR (48)
+R*(df* + sin(0)*d¢?) (49)

Defining 7 =t — [ 22— dR, we finally have

ds® = —(1— H*R*)dr* + dR* + R*(df? + sin(0)*d¢?) (50)

1-H?R?
Note that this has the same form as the Schwartzschild metric, with a singularity
at R = % This metric ( with H constant) is DeSitter spacetime and the singular
surface is the cosmological horizon. Note again that this horizon is a coordinate
singularity.
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