Physics 407-07
Assignment 5
Note: In the following D_{A} is to be taken to be the same thing as ∇_{A} in the lectures.
1.) Consider the metric

$$
\begin{equation*}
d s^{2}=-\rho^{2} d \tau^{2}+d \rho^{2} \tag{1}
\end{equation*}
$$

i) What are the Christofel symbols for this metric?

$$
\begin{array}{r}
g_{\tau \tau}=-\rho^{2} \\
g_{\rho \rho}=1 \tag{3}
\end{array}
$$

and the rest 0 , so the matrix is

$$
g_{i j}=\left(\begin{array}{cc}
-\rho^{2} & 0 \tag{4}\\
0 & 1
\end{array}\right)
$$

so the inverse matrix is

$$
g_{i j}=\left(\begin{array}{cc}
-\frac{1}{\rho^{2}} & 0 \tag{5}\\
0 & 1
\end{array}\right)
$$

or

$$
\begin{array}{r}
g^{\tau \tau}=-\frac{1}{\rho^{2}} \\
g^{\rho \rho}=1 \\
g^{\tau \rho}=g^{\rho \tau}=0 \tag{8}
\end{array}
$$

From

$$
\begin{equation*}
\Gamma_{j k}^{i}=\frac{1}{2} \sum_{l} g^{i l}\left(\partial_{j} g_{l k}+\partial_{k} g_{j l}-\partial_{l} g_{j k}\right) \tag{9}
\end{equation*}
$$

we see that the only term which will survive is if two of $i j k$ are τ and one is ρ, with the ρ being the derivative.

$$
\begin{equation*}
\Gamma_{\tau \rho}^{\tau}=\Gamma_{\rho \tau}^{\tau}=\frac{1}{2} g^{\tau \tau} \partial_{\rho} g_{\tau \tau}=\frac{1}{\rho} \tag{10}
\end{equation*}
$$

and

$$
\begin{array}{r}
\Gamma_{\tau \tau}^{\rho}=\frac{1}{2} g^{\rho \rho}\left(-\partial_{\rho} g_{\tau \tau}\right) \\
=\rho \tag{12}
\end{array}
$$

Alternatively, one could use the variational principle to get the geodesic equations

$$
\begin{equation*}
\delta \int g_{i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s} d s=0 \tag{13}
\end{equation*}
$$

or

$$
\begin{align*}
\frac{d}{d s}\left(\rho^{2} \frac{d \tau}{d s}\right) & =0 \tag{14}\\
-\frac{d}{d s}\left(\frac{d \rho}{d s}\right)-\rho\left(\frac{d \tau}{d s}\right)^{2} & =0 \tag{15}
\end{align*}
$$

or writing in terms of the second derivatives alone

$$
\begin{align*}
\frac{d^{2} \tau}{d s^{2}}+2 \rho \frac{d \tau}{d s} \frac{d \rho}{d s} & =0 \tag{16}\\
\frac{d^{2} \rho}{d s^{2}}+\rho\left(\frac{d \tau}{d s}\right)^{2} & =0 \tag{17}
\end{align*}
$$

from which we can read off

$$
\begin{array}{r}
\Gamma_{\tau \rho}^{\tau}=\Gamma_{\rho \tau}^{\tau}=\frac{1}{\rho} \\
\Gamma_{\tau \tau}^{\rho}=\rho \tag{19}
\end{array}
$$

ii) What is the acceleration vector and its magnitude for the curve $\rho=\rho_{0}$ at various times τ ?
$* *$
Note that since we are using τ as one of the coordinates, we cannot use it as the timelike path-length parameter. I will thus use s to designate that parameter, even though usually s is the pathlength parameter for spacelike curves.

The acceleration is the derivative of the velocity. In order that this be a tensor relation, the derivative must be the covariant, parallel, derivative along the curve.

$$
a^{A}=\frac{D u^{A}}{D s}
$$

The components of a^{A} are then

$$
\begin{align*}
\sum_{i} a^{i}{\frac{\partial}{\partial x^{i}}}^{A}= & \frac{D u^{i}}{D s}{\frac{\partial}{\partial x^{i}}}^{A}+u^{i} \frac{D}{D s}{\frac{\partial}{\partial x^{i}}}^{A} \tag{20}\\
& =\left(\frac{d u^{i}}{d s}+u^{j} \Gamma_{j k}^{i} u^{k}\right){\frac{\partial}{\partial x^{i}}}^{A} \tag{21}
\end{align*}
$$

(where I have used the summation convention, that if upper and lower indices are repeated, then that also means that they are summed over.)

Now, if the curve is $\rho=\rho_{0}$. then s must be chosen to be the length along the curve, which is

$$
\begin{equation*}
d s=\sqrt{\rho_{0}^{2} d \tau^{2}}=\rho_{0} d \tau \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\tau=\frac{s}{\rho_{0}} \tag{23}
\end{equation*}
$$

Thus

$$
\begin{array}{r}
\frac{d \tau}{d s}=\frac{1}{\rho_{0}} \\
\frac{d^{2} \tau}{d s^{2}}=\frac{d \rho}{d s}=\frac{d^{2} \rho}{d s^{2}}=0 \tag{25}
\end{array}
$$

and thus

$$
\begin{array}{r}
a^{\tau}=\frac{d^{2} \tau}{d s^{2}}+\frac{2}{\rho_{0}} \frac{d \tau}{d s} \frac{d \rho}{d s}=0 \\
a^{\rho}=\frac{d^{2} \rho}{d s^{2}}+\rho_{0} \frac{d \tau^{2}}{d s}=\frac{1}{\rho_{0}} \tag{27}
\end{array}
$$

Ie, the acceleration is constant, and has only a ρ component, which makes sense since it must be orthogonal to the velocity which has only a τ component.
iii)If you have a field ϕ defined at all values of τ, ρ, what is the wave equation in terms of τ, ρ

$$
\begin{equation*}
g^{A B} D_{A}\left(D_{B} \phi\right)=0 \tag{28}
\end{equation*}
$$

We looked at this field equation in class, and showed that in components it is

$$
\begin{array}{r}
g^{A B} D_{A}\left(D_{B} \phi\right)=D_{A}\left(g^{A B} D_{B} \phi\right)= \\
\frac{1}{\sqrt{|\operatorname{det}(g)|}} \partial_{i} \sqrt{|\operatorname{det}(g)|} g_{i j} \partial_{j} \phi \\
=\frac{1}{\rho} \partial_{\tau} \rho\left(\frac{-1}{\rho^{2}}\right) \partial_{\tau} \phi+\frac{1}{\rho} \partial_{\rho} \rho \partial_{\rho} \phi \tag{31}\\
=-\frac{1}{\rho} \partial_{\tau}^{2} \phi+\frac{1}{\rho} \partial_{\rho}\left(\rho \partial_{\rho} \phi\right)
\end{array}
$$

Note the similarity between this and the laplacian in polar coordinates.
2.)In ordinary $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ coordinates (with metric $d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}$), define the antisymmetric tensor $F^{A B}=-F^{B A}$ with components (and others
related to these by the antisymmetry)

$$
\begin{align*}
F^{t x} & =E_{x} \tag{32}\\
F^{t y} & =E_{y} \tag{33}\\
F^{t z} & =E_{z} \tag{34}\\
F^{x y} & =B_{z} \tag{35}\\
F^{y z} & =B_{x} \tag{36}\\
F^{z x} & =B_{y} \tag{37}
\end{align*}
$$

where E_{i} are the usual components of the electromagnetic field, and B_{i} are those for the magnetic field.
i) If one has a source free Electromagetic field, show that the equations

$$
\begin{align*}
D_{A} F^{A B} & =0 \tag{38}\\
D_{A} F_{B C}+D_{B} F_{C A}+D_{C} F_{A B} & =0 \tag{39}
\end{align*}
$$

expressed in terms of the coordinates $t, x, y . z$ are the electromagnetic field equations.
*** $* *$
Implicit is that we are to use the standard Minkowskian coordinates. This means that the metric is all constants, and all the christofel symbols are 0 , and covariant derivaties are the same as ordinary.

Thus we can look at the various components.

$$
\begin{equation*}
\sum_{i} \partial_{i} F^{t i}=\partial_{t} F^{t t}+\partial_{x} F^{t x}+\partial_{y} F^{t y}+\partial_{z} F^{t z}=0 \tag{40}
\end{equation*}
$$

But $F^{t t}=0$ since it is antisymmetric, and the others can be expressed in terms of E , so this becomes

$$
\begin{equation*}
\nabla \cdot \vec{E}=0 \tag{41}
\end{equation*}
$$

The next is the x component

$$
\begin{align*}
\sum_{i} \partial_{i} F^{x i} & =\partial_{t} F^{x t}+\partial_{y} F^{x y}+\partial_{x} F^{x z} \tag{42}\\
& =-\partial_{t} E^{x}+\partial_{y} B_{z}-\partial_{z} B_{y} \tag{43}
\end{align*}
$$

and similarly for the y and z components to give

$$
\begin{equation*}
-\partial_{t} \vec{E}+\nabla \times \vec{B}=0 \tag{44}
\end{equation*}
$$

The metric is diagonal with $g_{t t}$ being -1 and $g x x=g_{y y}=g_{z z}=1$.This means that the components of $F_{i j}$ will be the same as those of $F^{i j}$ except that those with one t in $i j$ will be of the opposite sign.

$$
\begin{array}{ll}
& F_{t i}=-E_{i} \\
F_{x y}=B_{s} ; & F_{y z}=B_{x} \tag{46}
\end{array} \quad F_{z x}=B_{y}
$$

Because

$$
\nabla_{A} F_{B C}+\nabla_{B} F_{C A}+\nabla_{C} F_{A B}
$$

is completely antisymmetric, the components are non zero only if $i j k$ are all different.

$$
\begin{array}{r}
\partial_{x} F_{y x}+\partial_{y} F_{z} x+\partial_{z} F_{x y} \\
=\partial_{x} B_{x}+\partial_{y} B_{y}+\partial_{z} B_{z}=0 \tag{48}
\end{array}
$$

or

$$
\begin{equation*}
\vec{\nabla} \times \vec{B}=0 \tag{49}
\end{equation*}
$$

Similarly looking at the one where $i j k$ does not include x

$$
\begin{array}{r}
\partial_{t} F_{y z}+\partial_{y} F_{z t}+\partial_{z} F_{t x} \\
=\partial_{t} B_{x}+\partial_{y} E_{z}-\partial_{z} B_{y}=0 \tag{51}
\end{array}
$$

or

$$
\begin{equation*}
\partial_{t} \vec{B}+\vec{\nabla} \times \vec{B}=0 \tag{52}
\end{equation*}
$$

which are exactly Maxwell's equations.
(Note- first show that for the components, the three component indicees in the second equation must all be different for the left hand side to be non-zero. Thus there are really only 4 non-trivial equations.
ii)Show that in general for an arbitrary antisymmetric $F^{A B}=-F^{B A}$, that $D_{A} D_{B} F^{A B}=0$ Note that while the antisymmetric derivative of a scalar is assumed to be zero, you cannot make this assumption for a tensor. Instead look at the components of this tensor expression and use the properties of the Christofel symbols.
$* *$

$$
\begin{array}{r}
D_{B} F^{A B} \rightarrow \partial_{j} F^{i j}+\Gamma_{k j}^{i} F^{k j}+\Gamma_{k j}^{j} F^{k j} \\
 \tag{54}\\
=\partial_{j} F^{i j}+\Gamma_{k j}^{j} F^{k j}
\end{array}
$$

since F is anti symmetric in its indices and Γ is symmetric in its lower two indices.

Now this vector, $W^{A}=D_{B} F^{A B}$ has derivative

$$
\begin{equation*}
D_{A} W^{A} \rightarrow \partial_{i} W^{i}+\Gamma_{l i}^{i} W^{l} \tag{55}
\end{equation*}
$$

Thus

$$
\begin{array}{r}
D_{A} D_{B} F^{A B} \rightarrow \partial_{i}\left(\partial_{j} F^{i j}+\Gamma_{k j}^{i} F^{k j}+\Gamma_{k j}^{j} F^{i k}\right)+\Gamma_{l i}^{i}\left(\partial_{j} F^{l j}+\Gamma_{k j}^{l} F^{k j}+\Gamma_{k j}^{j} F^{l k}\right) \\
=\partial_{i} \partial_{j} F^{i j}+\partial_{i}\left(\Gamma_{k j}^{i} F^{k j}+\Gamma_{k j}^{j} F^{i k}\right)+\Gamma_{l i}^{i}\left(\partial_{j} F^{l j}+\Gamma_{l i}^{i} \Gamma_{k j}^{l} F^{k j}+\Gamma_{k j}^{j} F^{l k}\right) \tag{57}
\end{array}
$$

Now the first term is zero, because for each term like $\partial_{x} \partial_{y} F^{x y}$ we have another one $\partial_{y} \partial_{x} F^{y x}=-\partial_{y} \partial_{x} F^{x y}=-\partial_{x} \partial_{y} F^{x y}$ which cancells it.
terms like $\Gamma_{j k}^{l} F^{j k}$ are zero because F is antisymmetric while the Christofel symbols are symmetric and thus $\Gamma_{k j}^{l} F^{k j}=\Gamma_{j k}^{l} F^{j k}$ by renaming the summation indices $k \leftrightarrow j$ and this equals $\Gamma_{k j}^{l}\left(-F^{k j}=-\Gamma_{k j}^{l} F^{k j}\right.$ so the term equals its negative.

Thus we are left with

$$
\begin{equation*}
D_{A} D_{B} F^{A B} \rightarrow \partial_{i}\left(\Gamma_{k j}^{j} F^{i k}\right)+\Gamma_{l i}^{i} \partial_{j} F^{l j}+\Gamma_{l i}^{i} \Gamma_{k j}^{j} F^{l k} \tag{58}
\end{equation*}
$$

In the last term the product of the two Γ are symmetric while F is antisymmetric so this term is zero. Thus

$$
\begin{equation*}
\partial_{i}\left(\Gamma_{k j}^{j} F^{i k}\right)+\Gamma_{l i}^{i} \partial_{j} F^{l j}=\left(\partial_{i} \Gamma_{k j}^{j}\right) F^{i k}+\Gamma_{k j}^{j} \partial_{i} F^{i k}+\Gamma_{l i}^{i} \partial_{j} F^{l j} \tag{59}
\end{equation*}
$$

The last two terms cancel (relabel $i \leftrightarrow j$ and relabel k as l and the two terms are seen to be identical except fot the reversed indices of F. Since F is antisymmetric, the two terms cancel).

Finally we need to look at

$$
\begin{equation*}
\left(\partial_{i} \Gamma_{k j}^{j}\right)=\partial_{i} \partial_{k}\left(\frac{1}{2} \ln (|\operatorname{det} g|)\right) \tag{60}
\end{equation*}
$$

which is symmetric in i and k , and thus this term also cancels.
iii)Find $F^{A}{ }_{A}$ and $F^{A B} F_{A B}$ in terms of E and B.
$* *$
Since F is antisymmetric, $F_{A}^{A}=g_{A B} F^{A B}=g_{B A} F^{B A}$ by relabeling the contraction indicees $g_{B A} F^{B A}=\left(g_{A B}\right)\left(-F^{A B}=-g_{A B} F^{A B}\right.$ Thus $g_{A B} F^{A B}=$ $-g_{A B} F^{A B}$ and thus must be zero.

Using the Minkowski metric which is diagonal, we have that $F_{t i}=g_{t t} g_{i i} F^{t i}=$ $-F^{t i}$ for $\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}$. And $F_{i j}=g_{i i} g_{j j} F^{i j}$. Thus (using that $F^{t t}=F^{x x}=F^{y y}=$ $F^{z z}=0$)

$$
\begin{array}{r}
F^{A B} F_{A B}=F^{t x} F_{t x}+F^{t y} F_{t y}+F^{t z} F_{t z}+F^{x t} F_{x t}+F^{x y} F_{x y} \\
+F^{x z} F_{x z}+F^{y t} F_{y t}+F^{y x} F_{y x}+F^{y z} F_{y z}+F^{z t} F_{z t}+F^{z x} F_{z x}+F^{z y} F_{z y} \\
=2\left(-\sum_{i=1}^{3} F^{t i^{2}}+2\left(F^{x y 2}+F^{y z 2}+F^{z x 2}\right)\right. \\
=2(\vec{B} \cdot \vec{B}-\vec{E} \cdot \vec{E}) \tag{64}
\end{array}
$$

3. Show that the stress-energy tensor for the source free electromagnetic field

$$
\begin{equation*}
T^{A B}=F^{C A} F_{C}^{B}-\frac{1}{4} F^{C D} F_{C D} g^{A B} \tag{65}
\end{equation*}
$$

is conserved by the equations of motion of the electromagnetic field. Ie, $\nabla_{A} T^{A B}=$ 0 .
**

$$
\begin{gathered}
\nabla_{A} T^{A B}=\nabla_{A}\left(F^{A C} F^{B}{ }_{C}\right) \\
=\left(\nabla_{A} F^{A C}\right) F^{B}{ }_{C}+F^{A C} \nabla_{A} F \\
=F^{A C} \nabla_{A}\left(g^{B X} F_{2}\right.
\end{gathered}
$$

bythefirstmaxwellequation
$=F^{A C} g^{B X}\left(-\nabla_{X} F_{B C}-\nabla_{B} F_{C X}\right)-\frac{1}{2} g^{A B} g^{C X} g^{D Y} F_{X Y} \nabla_{A} F_{C D} \quad$ bythesecondMaxwellequationandbyalterir $=F^{A C} g^{B X}\left(-\nabla_{X} F_{B C}+\nabla_{B} F_{X C}\right)-\frac{1}{2} g^{A B} F^{C D}\left(-\nabla_{C} F_{D A}-\right.$
$=0+-\frac{1}{2} g^{A B} F^{C D}\left(-\nabla_{C} F_{D A}+\nabla_{D} F_{C A} \quad\right.$ byrelabelingofindices $B X$ $=0 \quad \mathrm{~b}$
4. The relativistic Lorentz force law for a particle of mass m and charge e can be written as

$$
\begin{equation*}
m \frac{D u^{A}}{D \tau}=e u_{B} F^{A B} \tag{74}
\end{equation*}
$$

Show that this preserves the length of the vector u^{A} as it should. Show that this gives the usual force law of and electric and magnetic field on a charged particle in the non-relativistic limit in the usual flat spacetime metric

$$
\begin{equation*}
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2} \tag{75}
\end{equation*}
$$

$88888^{* ~}$
$m g_{A C} u^{C} \frac{D u^{A}}{D \tau}=e u_{A} u_{B} F^{A B}=-e u_{A} u_{B} F^{B A}=-e u_{B} u_{A} F^{A B} \quad$ byrelabeling $A B \leftrightarrow B A$ ontheRHS (76)
by the antisymmetry of F. But
$\frac{D}{D \tau}\left(g_{A B} u^{A} u^{B}\right)=g_{A B} u^{B} \frac{D u^{A}}{D \tau}+g_{A B} u^{A} \frac{D u^{B}}{D \tau} \quad$ byproductruleandzeroderivativeofg (78)

$$
\begin{equation*}
=2 u_{A} \frac{D u^{A}}{D \tau} \tag{79}
\end{equation*}
$$

which is 0 if the length squared of the velocity vector u is constant.

In the Minkowski frame where the Christofel symbols are zero, this becomes

$$
\begin{equation*}
d u^{t}=\text { over } d \tau=\frac{e}{m} u_{x} E^{x}+u_{y} E^{y}+u_{z} E^{z}=u^{t} \frac{e}{m} \vec{v} \cdot \vec{E} \tag{80}
\end{equation*}
$$

using $u^{x}=v^{x} u^{t}$ Recalling that $\frac{d}{d \tau}=\frac{d t}{d \tau} \frac{d}{d t}=u^{t} \frac{d}{d t}$ this becomes

$$
\frac{d u^{t}}{d t}=\frac{e}{m} \vec{v} \cdot \vec{E}
$$

which if $m u^{t}$ is interpreted as the energy of the particle is just the statement that the rate of change of energy is the work done by the E field/

$$
\begin{align*}
\frac{d u^{x}}{d \tau}=\frac{e}{m} & -u^{t} F^{x t}+u^{y} F^{x y}+u^{z} F^{x z} \tag{82}\\
& =\frac{e}{m} u^{t} E^{x}+u^{y} B^{z}-u^{z} B^{y} \tag{83}
\end{align*}
$$

or again

$$
\frac{d u^{x}}{d t}=\frac{e}{m} E^{x}+(\vec{v} \times \vec{B})^{x}
$$

or

$$
\frac{d\left(u^{t} \vec{v}\right)}{d t}=\frac{e}{m} \vec{E}+\vec{v} \times \vec{B}
$$

which in the non-relativistic limit where $u^{t} \approx 1$ gives us the Lorentz force law for electromagnetism.
(If we assume that the momentum is $m \vec{u}$ instead of $m \vec{v}$ then we see that this force law is exactly the Lorentz force law in all cases, not just the non-relativistic limit)

