Physics 407-07
Assignment 2
1.) Consider the two dimensional flat metric

$$
\begin{equation*}
d s^{2}=d x^{2}-d t^{2} \tag{1}
\end{equation*}
$$

and the coordiante transformation

$$
\begin{array}{r}
x=\rho \cosh (\tau) \\
t=\rho \sinh (\tau) \tag{3}
\end{array}
$$

Show that the curve $\rho=$ const is a timelike curve and $\tau=$ const a spacelike one.

Now take the equations

$$
\begin{align*}
& x=T \sinh (Y) \tag{4}\\
& t=T \cosh (Y) \tag{5}
\end{align*}
$$

Which region of flat space-time in x, t do these coordinates cover? What are the equations of straight lines for these equations?
2. a)Consider the set of tangent vectors t^{A} pointing away from the center of the earth at the surface of the earth. What are the components of this vector in r, θ, ϕ coordinates. Assume that the r component is a constant. Find the components in x, y, z coordinates.
b) consider the function $f(p)=\theta(p)$ where θ is the usual angle of that name in polar coordinates. What are the components of the cotangent vector $d f^{B}$ in polar and rectangular coordinates? What is the inner product $t^{A} d f_{A}$ in polar and in rectangular coordinates?
3. Calculate the Newtonian potential gravitational potential for an infinite plane of matter. (assume that the solution of Newton's equations is independent of y and z) What would Einstein's guess at a metric for this distribution of matter be. Compare this to the coordinates for Rindler space given above. For the Newtonian case, does the surface $\rho=0$ from problem 1 make any sense?
3. Consider 3 dimensional flat space in rotating coordinates

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}-d t^{2} \tag{6}
\end{equation*}
$$

First define polar spatial coordinates

$$
\begin{gather*}
x=r \cos (\theta) \tag{7}\\
y=r \sin (\theta) \tag{8}
\end{gather*}
$$

What is the metric in this coordinate system?

Now define a new ϕ coordinate by

$$
\begin{equation*}
\theta=\phi-\omega t \tag{9}
\end{equation*}
$$

What is the metric in this coordinate system?
A particle at constant ϕ, r goes around in circles in the x, y coordinates. What is the gravitational potential for this particle? What are the geodesic equations for a particle in this system of coordinates? Consider the particle travelling along a geodesic. For small velocities of the particle, there is an apparent force on the particle, which depends both on position and velocity. What is that force?
(By "force" I mean the right hand side of the equations-the rate of change of coordinate velocity as a function of time.)

$$
\begin{align*}
\frac{d^{2} r}{d t^{2}} & =\ldots \tag{10}\\
\frac{d}{d t}\left(r \frac{d \theta}{d t}\right) & =\ldots \tag{11}
\end{align*}
$$

4.) Equivalence Principle:

Show that the Eotvos experiment still works even if the two masses are not the same. Ie, assume you have two objects with gravitational mass m_{1} and m_{2} and inertial masses of $\left(1+\epsilon_{1}\right) m_{1}$ and $\left(1+\epsilon_{2}\right) m_{2}$ hung as a torsion balance of length L from a fibre so that if they are oriented north-south, they hang horizontally and are oriented exactly North-south. If the support is rotated exactly 90 degrees, find the angle with the east-west direction that the arm of the balance hangs at, and show that this angle is proportional to $\epsilon_{1}-\epsilon_{2}$. What is the deflection angle? (Assume that the period of torsional oscillation of the system is T seconds and that the laboratory is located at latitude θ.) You can assume that ϵ is very small and keep only first order effects in ϵ.

If the length of the torsion bar is 1 meter, m_{1} is approximately m_{2}, and approximately 1 Kg , and the torsional period is 40 min , what is the value of the deflection angle as a function of $\epsilon_{1}-\epsilon_{2}$. Assuming that the graduate student sent into the room to measure the angles has a mass of 100 Kg and is 10 m from m_{1} perpendicular to the torsion arm, what would be the deflection caused by the student in comparison with the deflection caused the difference in inertial/gravitational mass, if $\epsilon_{1}-\epsilon_{2}$ is 10^{-8}. .

