Physics 407-08
Scwartzschild metric geodesics

In the early months of 1917, while an artillery officer on the Eastern front,
Schwartzschild found the first exact solution of Einstein’s field equations,
published a month earlier.

The solution he found had the metric form

2M

ds? = —(1 — 22y
s ( T) —l—l

dr® + r?(d6® + sin(0)*d¢?) (1)

_ 2M
T

This is a symmetric metric. It does not depend on time, so it has a time

translation symmetry. The only dependence on the two angles 6 ¢ is in the

metric of a uniform sphere d? + sin(#)?d$?). Since the distance around the

circumpherence of the sphere, ¢t and r both constant and 6 = 7 /2 is 27r, the

coordinate r has been chosen to be given by the circumference of the spheres.
This metric has four independent Killing vectors,

K,y =[1,0,0,0] (2)
K,y =10,0,0,1] (3)
Ky = 0,0, cos(¢), —sin(p)cot()] (4)
K,y = 0,0, —sin(¢), cos(¢)cot()] (5)
The first two are obvious because nothing in the metric depends on either ¢

or t. The last two are not so obvious but can be shown to obey the Killing
equation

Z(K’“akgij —+ gik(‘?jK’“ —+ gkjaiK’“) =0 (6)
k

The last three Killing vectors correspond to the three rotations ( about the
z,x y axes) that one would expect for a spherically symmetric metric.

Since another way of writing the Killing equation is in terms of the parallel
derivative

DuKp+ DKy =0 (7)
For a geodesic (straight line) we find

Dy(K U*) = (DyKA)U* + KAD,U* = UPDgK, U, +0=0 (8)
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The first 0 is because U4 is the unit tangent vector to the curve and for a
geodesic, the unit tangent vector has parallel derivative of 0. The second 0
is because D K,UBUA = D,KgzUBU* .

Thus the contraction of the 4 Killing vectors with U4 are all constants
of motion. The three angular Killing vectors are can all be rotated so that
the two of the constants are 0. We choose K(Z)AUA = L as the non-zero one.
The other two being zero imply that UY is zero and that cot() is zero— ie
the orbit lies in the equatorial plane.

We thus have

gttUt =L (9)
9osU? = L (10)
Or
dt E
ds ~ 1-2M (11)
dé L
& o 12)

(where I have used the fact that sin(¢) = 1.) Using the normalisation of the
tangent vector

1 dr E? L?
o) TyTm e Tl (13)
If we are interested in the shape of the orbit, we can rewrite this equation in

terms of ¢
dr drd¢ dr L  di

ds — dpds  dor? do

Defining v = % we get

LQ(;Z—Z)Z — E? + (1 — 2Mu)(u®) = -1 (14)
(3—2)2 _B- (IL; 2Mu) 4 o nguy? (15)



The right hand side is a cubic equation, which can be written as

d
(ﬁ)2 = 2M (up — w) (ul — u)(u — u2) (16)
where

Uy + . (17)

u u Uy = ——

O T oM
U1 + UgUg + UUs = ﬁ (18)
CEr-1 (19)

ot = oML

If T define @ = (u; + uz)/2 and A = (u; — uy)/2 (Note that this A is
1/2 of the definition I used in the lectures), and we assume that L is
very large, and that E? < 1 (ie the orbit is a bound orbit), we have that
u is very small. If we assume that the orbit is nearly circular, we have the
A << u. We can write

du
o = 20
/ /\/ZM(UO—U)(M—U)(U?_U) o
du
i o e e e

(21)

Thus u must lie between u £ A and by assumption since A is very small, u
is very close to #.Thus we can write

du
22
/ V(L= 6Ma — (u— 1)) (A2 — (u—1u)?) 22)

du
- / J = 6Ma)(A? — (u—a)?) (23)
1 u—1u
= marecos( A ) (24)
u=1u-+ %cos( (1-6Mu)¢p (25)



Thus the orbit will return to the initial value of u after an angle of

(1= 6Mu)¢ =27 (26)

or
56 = —— 2"~ on(1+ 3Ma) (27)
(1 —6Mua)

Thus in one orbit, the angle at which closest approach( largest u) occurs
advances by 6rMu = % where R is the radius of the orbit.

This prediction that in General Relativity the perihelion will advance
was one of the first indications that General Relativity was right. In the
19th century, the calculation of Mercury’s orbit showed that there was an
unexplained advance of the perihelion of about 42 seconds of arc per century.
The prediction of General Relativity was just 42 seconds of arc per century.

0.1 Bending of light

The only difference between the orbit of light or of a massive particle is that
the length of the tangent vector for light is 0. This implies that the equation
for u as a function of ¢ is

(3—2)2 = f—j —u*(1 — 2Mu) (28)

Again the right hand side can be written as cubic with the three roots ug u; us
in order of the biggest to smallest roots. In this case

1
=— —21u 29
Ug Wi u (29)
UgU1 + UgUs + U U2 = 0 (30)
E2
2MU,0U,1U2 = —ﬁ (31)
or

I _ ) —2 2

—a—2u"+ (" —A%)=0 (32)
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Assuming that u and A are very small, we have
U~ 2M A? (33)

le, u is much smaller than is A. We can again integrate the equation. As-
suming that ¢ increases as r increases (or as u decreases) we have

du
_/\/(1—6Ma—2M(u—a))(A2_(u_a)Z) (34)
(1+3Mu)acos(u;u)_/(M(U;zi)ciu )

(1+3Mu)acos( A )—i—MA\/l— (v —)° (36)
—|—MA\/1— (37)

Thus the deflection angle from u = u + A (the closest approach) to u = 0
(which is r = 00) is

~ acos(

o = acos(—g) + MA = Ty

X 2A)+MA:g+2MA (38)

Since to lowest order 7, = 1/(A + ) ~ 1/A, we have that the total
deflection angle is twice the deflection from the closest approach to infinity,
which is

200 =7 +4 M

T'min

(39)

For the sun at the limb of the sun, this is approximately 1.75 seconds
of arc. (that is 48 microns in a 10 metre telescope— the accuracy to which
Dyson and Eddington had to measure the displacement of the stars on their
photographic plates if the star image were right next to the limb of the sun.)

Note that Hipparcos sattelite measures the location of stars to of order a
milli arc-second. Thus they would be able to see the deflection of starlight
over 1000 times the radius of the sun. Since the earth’s orbit is only about
100 times the radius of the sun, they could easily measure the deflection
of stars whose light had an impact parameter of earth’s orbit. Ie, one of
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the larger corrections they had to make to the positions of the stars was
that due to the deflection of the light by the sun. In fact, since the earth’s
mass is about 107 of the sun’s and the radius of the earth is about 1/100th
that of the sun, the deflection of light by the earth is almost at the limit
of detectability by Hipparcos, and will be by the next astrometry sattelite,
Gaia whose accuracy will be 25 micro arc-seconds.

0.2 Time delay

In 1964 1. Shapiro suggested another test of the General Relativity, the delay
of a light beam passing near the sun or other gravitating body. In the late
70s he measured it by observing the passage of radar signals past the sun by
sending a pulse from the earth to venus and timing the return of the signal
(as can be imagined the returning signal was rather weak.)

We look at the equation of motion for light as metioned above. We know
that its path is, to first order in M given by

u— %= Acos(¢p — MAsin(¢)) ~ Acos(¢) + MA%sin’(¢) (40)

The time is given by
dt E

== 41
ds 1—2Mu (41)
or, expressing this in terms of u
dt du E
- - = 42
du ds 1—-2Mu (42)
dt  FE 1 (43)
du Lu2(1—2Mu)\/2M(u0—u)(u1—u)(u—u2)
Thus we have
1+3M
t=[a My g, (44)
u?y/A% — (u —u)?
] — (o 1+ Mu+ /1 - 38
~Y—— 2 1 2MIn = (45)
u u
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letting w = 1/r and A = 1/r,;, we get

t=/r2 =12, +2MIn(r +/r2 —r2..) (46)

For large r, the first term is just what we would expect from Newtonian

theory (if \/r2 — 72, is the disntance travelled) and the second term blows

up logarithmically in r. It is the what is usually called the Shapiro time
delay. For large r the delay on going from r,,;, to r is

2r

5t ~ 2M In(——) (47)

T'min
If it comes from a source, the same is true of the source. Ie, the total delay
is
4rgr,

2M In(—5) (48)

min

where 7, is the distance the source is away from the deflecting body, while
ro is the distance the observer is away.



