
Physi
s 407-08S
wartzs
hild metri
 geodesi
sIn the early months of 1917, while an artillery oÆ
er on the Eastern front,S
hwartzs
hild found the �rst exa
t solution of Einstein's �eld equations,published a month earlier.The solution he found had the metri
 formds2 = �(1� 2Mr )dt2 + 11� 2Mr dr2 + r2(d�2 + sin(�)2d�2) (1)This is a symmetri
 metri
. It does not depend on time, so it has a timetranslation symmetry. The only dependen
e on the two angles � � is in themetri
 of a uniform sphere d�2 + sin(�)2d�2). Sin
e the distan
e around the
ir
umpheren
e of the sphere, t and r both 
onstant and � = �=2 is 2�r, the
oordinate r has been 
hosen to be given by the 
ir
umferen
e of the spheres.This metri
 has four independent Killing ve
tors,Ki(t) = [1; 0; 0; 0℄ (2)Ki(z) = [0; 0; 0; 1℄ (3)Ki(x) = [0; 0; 
os(�);�sin(�)
ot(�)℄ (4)Ki(x) = [0; 0;�sin(�); 
os(�)
ot(�)℄ (5)The �rst two are obvious be
ause nothing in the metri
 depends on either �or t. The last two are not so obvious but 
an be shown to obey the Killingequation Xk (Kk�kgij + gik�jKk + gkj�iKk) = 0 (6)The last three Killing ve
tors 
orrespond to the three rotations ( about thez,x y axes) that one would expe
t for a spheri
ally symmetri
 metri
.Sin
e another way of writing the Killing equation is in terms of the parallelderivative DAKB +DBKA = 0 (7)For a geodesi
 (straight line) we �ndDs(KAUA) = (DsKA)UA +KADsUA = UBDBKAUA + 0 = 0 (8)1



The �rst 0 is be
ause UA is the unit tangent ve
tor to the 
urve and for ageodesi
, the unit tangent ve
tor has parallel derivative of 0. The se
ond 0is be
ause DBKAUBUA = DAKBUBUA .Thus the 
ontra
tion of the 4 Killing ve
tors with UA are all 
onstantsof motion. The three angular Killing ve
tors are 
an all be rotated so thatthe two of the 
onstants are 0. We 
hoose K(z)AUA = L as the non-zero one.The other two being zero imply that U � is zero and that 
ot(�) is zero{ iethe orbit lies in the equatorial plane.We thus have gttU t = E (9)g��U� = L (10)Or dtds = E1� 2Mr (11)d�ds = Lr2 (12)(where I have used the fa
t that sin(�) = 1.) Using the normalisation of thetangent ve
tor 11� 2Mr (drds)2 � E21� 2Mr + L2r2 = �1 (13)If we are interested in the shape of the orbit, we 
an rewrite this equation interms of � drds = drd� d�ds = drd� Lr2 = �d1rd�LDe�ning u = 1r we getL2(dud�)2 � E2 + (1� 2Mu)(u2) = �1 (14)or (dud�)2 = E2 � (1� 2Mu)L2 � (1� 2Mu)u2 (15)2



The right hand side is a 
ubi
 equation, whi
h 
an be written as(dud�)2 = 2M(u0 � u)(u1� u)(u� u2) (16)where u0 + u1 + u2 = 12M (17)u0u1 + u0u2 + u1u2 = 1L2 (18)u0u1u2 = E2 � 12ML2 (19)If I de�ne �u = (u1 + u2)=2 and � = (u1 � u2)=2 (Note that this � is1/2 of the de�nition I used in the le
tures), and we assume that L isvery large, and that E2 < 1 (ie the orbit is a bound orbit), we have that�u is very small. If we assume that the orbit is nearly 
ir
ular, we have the� << �u. We 
an writeZ d� = Z duq2M(u0 � u)(u1 � u)(u2 � u) (20)= Z duq(1� 6M �u� (u� �u))(�2 � (u� �u)2) (21)Thus u must lie between �u�� and by assumption sin
e � is very small, uis very 
lose to �u.Thus we 
an writeZ duq(1� 6M �u� (u� �u))(�2 � (u� �u)2) (22)� Z duq(1� 6M �u)(�2 � (u� �u)2) (23)= 1q(1� 6M �u)ar

os(u� �u� ) (24)or u = �u+ �2 
os(q(1� 6M �u)� (25)3



Thus the orbit will return to the initial value of u after an angle ofq(1� 6M �u)� = 2� (26)or Æ� = 2�q(1� 6M �u) � 2�(1 + 3M �u) (27)Thus in one orbit, the angle at whi
h 
losest approa
h( largest u) o

ursadvan
es by 6�M �u = 6�MR where R is the radius of the orbit.This predi
tion that in General Relativity the perihelion will advan
ewas one of the �rst indi
ations that General Relativity was right. In the19th 
entury, the 
al
ulation of Mer
ury's orbit showed that there was anunexplained advan
e of the perihelion of about 42 se
onds of ar
 per 
entury.The predi
tion of General Relativity was just 42 se
onds of ar
 per 
entury.0.1 Bending of lightThe only di�eren
e between the orbit of light or of a massive parti
le is thatthe length of the tangent ve
tor for light is 0. This implies that the equationfor u as a fun
tion of � is(dud�)2 = E2L2 � u2(1� 2Mu) (28)Again the right hand side 
an be written as 
ubi
 with the three roots u0 u1 u2in order of the biggest to smallest roots. In this 
aseu0 = 12M � 2�u (29)u0u1 + u0u2 + u1u2 = 0 (30)2Mu0u1u2 = �E2L2 (31)or 12M �u� 2�u2 + (�u2 ��2) = 0 (32)4



Assuming that �u and � are very small, we have�u � 2M�2 (33)Ie, �u is mu
h smaller than is �. We 
an again integrate the equation. As-suming that � in
reases as r in
reases (or as u de
reases) we have� = � Z duq(1� 6M �u� 2M(u� �u))(�2 � (u� �u)2) (34)= �(1 + 3M �u)a
os(u� �u� )� Z M(u� �u)du(�2 � (u� �u)2) (35)= (1 + 3M �u)a
os(u� �u� ) +M�s1� (u� �u)2�2 (36)� a
os(u� �u� ) +M�s1� (u� �u)2�2 (37)Thus the de
e
tion angle from u = �u + � (the 
losest approa
h) to u = 0(whi
h is r =1) isÆ� = a
os(� �u�) +M� = �2 �u�) +M� = �2 + 2M� (38)Sin
e to lowest order rmin = 1=(� + �u) � 1=�, we have that the totalde
e
tion angle is twi
e the de
e
tion from the 
losest approa
h to in�nity,whi
h is 2Æ� = � + 4 Mrmin (39)For the sun at the limb of the sun, this is approximately 1.75 se
ondsof ar
. (that is 48 mi
rons in a 10 metre teles
ope{ the a

ura
y to whi
hDyson and Eddington had to measure the displa
ement of the stars on theirphotographi
 plates if the star image were right next to the limb of the sun.)Note that Hippar
os sattelite measures the lo
ation of stars to of order amilli ar
-se
ond. Thus they would be able to see the de
e
tion of starlightover 1000 times the radius of the sun. Sin
e the earth's orbit is only about100 times the radius of the sun, they 
ould easily measure the de
e
tionof stars whose light had an impa
t parameter of earth's orbit. Ie, one of5



the larger 
orre
tions they had to make to the positions of the stars wasthat due to the de
e
tion of the light by the sun. In fa
t, sin
e the earth'smass is about 10�6 of the sun's and the radius of the earth is about 1/100ththat of the sun, the de
e
tion of light by the earth is almost at the limitof dete
tability by Hippar
os, and will be by the next astrometry sattelite,Gaia whose a

ura
y will be 25 mi
ro ar
-se
onds.0.2 Time delayIn 1964 I. Shapiro suggested another test of the General Relativity, the delayof a light beam passing near the sun or other gravitating body. In the late70s he measured it by observing the passage of radar signals past the sun bysending a pulse from the earth to venus and timing the return of the signal(as 
an be imagined the returning signal was rather weak.)We look at the equation of motion for light as metioned above. We knowthat its path is, to �rst order in M given byu� �u = �
os(��M�sin(�)) � �
os(�) +M�2sin2(�) (40)The time is given by dtds = E1� 2Mu (41)or, expressing this in terms of udtdu duds = � E1� 2Mu (42)dtdu = EL 1u2(1� 2Mu)q2M(u0 � u)(u1 � u)(u� u2) (43)Thus we have t = Z � 1 + 3Muu2q�2 � (u� �u)2du (44)� q1� (u��u)2�2u + 2M ln0�1 +Mu+q1� (u��u)2�2u 1A (45)6



letting u = 1=r and � = 1=rmin we gett = qr2 � r2min + 2M ln(r +qr2 � r2min) (46)For large r, the �rst term is just what we would expe
t from Newtoniantheory (if qr2 � r2min is the disntan
e travelled) and the se
ond term blowsup logarithmi
ally in r. It is the what is usually 
alled the Shapiro timedelay. For large r the delay on going from rmin to r isÆt � 2M ln( 2rrmin ) (47)If it 
omes from a sour
e, the same is true of the sour
e. Ie, the total delayis 2M ln(4rsror2min ) (48)where rs is the distan
e the sour
e is away from the de
e
ting body, whilero is the distan
e the observer is away.
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