
Efficiency of Sound Radiation from Vibrating Bodies

I. VIBRATION EFFICIENCY

Sound waves are primarily created by the vibration of physical bodies in contact with

the air. The motion of the body causes the air in the immediate vicinity of the body to

also move. The question I will address here is how much of that motion of the air in the

immediate vicinity of the body actually makes it out as sound waves far away from the body,

and what is the distribution of the sound energy in direction far away from the vibrating

body?

We will look at a number of cases, typified by a loudspeaker enclosed in a wall or in a

sound-tight box, a speaker not enclosed, in which sound can reach the listener from both

sides of the vibrating cone of the speaker, and sound emitted by a tuning fork, in which one

has two vibrating sources, for both of which the sound can get to the listener from both

sides of each of the tines of the fork, and in which the two tines are vibrating in opposite

directions at all times.

In each of these cases there are two regimes, the one where the wavelength of the sound

waves produced by the vibrating body is much larger than the dimensions of the vibrating

body, and the other where the dimensions of the body are larger than the wavelength of the

sound that is emitted. For musical instruments, the former is almost always (except for the

highest frequencies of sound emitted by an instrument) the case. The wavelength of sound

at 1kHz (near C two octaves above middle C) is 33 cm, and this is the maximum size of the

radiating area of most musical instruments which play notes that high.

Let us characterize the source of the sound by the velocity v of vibration. If the vibration

is of the simple harmonic type, (ie, looks like a sin wave if we graph the velocity as a function

of time) let us take v as the maximum velocity of the surface vibrating. The energy density

in the vibrating air near the piston I will then take to be 1

2
ρv2 where ρis the density of air.
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The density is a constant ( about 1.2Kg/m3) so the important feature of this energy density

is that it depends on the square of the velocity of the vibrating object. If all of this energy

were carried away from the surface in the escaping sound wave, then the total energy flow

away from the surface would be given by the energy density ( 1

2
ρv2) times the area of the

vibrating surface (A) times the velocity of sound (c). This last term is there because after

a second the sound energy that was produced at the beginning of the second would be a

distance c away at the end of that second. Thus the energy density would be spread over a

distance of c away from the speaker. The term A is there because each portion of the area

of the vibrating surface produces its energy.

However, this is not what actually happens. All of the energy produced near the vibrating

surface does not escape. Much of it simply sticks around the vibrating surface and never

escapes. It simply adds to the mass of the vibrating surface. [Note that you noticed this

when you dip a vibrating aluminium pot lid into water. The frequency drops because the

vibrating mass has increased due to the water around the lid vibrating with the lid.] This

is especially true at low frequency. If the wavelength of the sound is much larger than

the dimension of the vibrating surface, most of the energy of vibration of the air near the

vibrating surface does not radiate at all. I will call the fraction of the energy which actually

makes it away from the surface and out into the air as sound the efficiency with which the

sound escapes.

This efficiency depends on a number of factors. It depends on the exact shape of the

vibrating surface. It depends on the surrounds of the vibrating surface (eg whether the

speaker is mounted in a solid wall which extends as a flat wall far from the speaker, or if

it is mounted in a box about the same size as the speaker.) It furthermore depends most

crucially on the whether or not the sound can get to the listener only from one face of the

vibrating object or from more than one. Let me first look at the case where the wavelength

of the sound is much larger than the dimensions of the vibrating object. In the case where

the sound can get out from only one face of the speaker, the efficiency factor is given roughly
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as the square of the ratio of twice the size of the system divided by wavelength, or
(

2D
λ

)2

,

as long as the wavelength is much larger than the diameter of the vibrating system. If on

the other hand the sound can get to the listener from both sides of the vibrating surface,

the efficiency is now approximately given by
(

2D
λ

)4

for wavelengths much larger than the

diameter. If one has two vibrating areas in which both sides of each diaphragm emit sound

that can get to the listener and the two vibrate in opposite directions (eg, tuning fork) ,

then the sounds from the two almost cancel, and in this case the efficiency goes as
(

2D
λ

)6

.

In all of the above cases on the other hand, for frequencies which are much higher than

those for which the wavelength is about the same as the diameter of the object, (ie, the

wavelengths are much smaller than the size of the object) all of the energy gets out and the

efficiency is unity.

In the intermediate regime, the situation becomes complicated. However as a first ap-

proximation, we can simply take the efficiency as 1 for all frequencies such that λ/2, half the

wavelength, is smaller than D the diameter, and as
(

2D
λ

)2

if the wavelength is larger than

the diameter for the case of a simple one sided piston. For the case of a two sided piston, I

will take the expression as 1 for λ/2 < D and as
(

2D
λ

)4

for λ > D. For the case with two

vibrating diaphragms, in which they vibrate in opposition to each other, I will take it as

again 1 for λ/2 < D and
(

2D
λ

)6

for λ/2 > D.

Note that these expressions are crude approximations, and the actual frequency of tran-

sition can vary depending on the exact shape of the vibrating body, its enclosure, etc..

In the case of the diaphragm for which one can hear the sound from both sides, the

answer depends not only on the diameter of the vibrating diaphragm, but also on how far

the sound has to travel to get to the listener from the back of the diaphragm. Similarly

in the case of two out of phase diaphragms, the distance between the diaphragms is also

important. A better approximation would be to write the expression in this third case as

(

2D

λ

)2 (

2W

λ

)2 (

2L

λ

)2

, where W is the width of the barrier in which the speaker is mounted (ie the distance the
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sound has to go to get around from the back to the front where the listener is, and L is the

distance between the two radiating ”diaphragms”. However even this expression is a rough

estimate of the efficiency. We however are not carrying out detailed calculations, but are

simply trying to get a feeling for the effects. Thus, for the purposes of this course I will

always use the above crude approximations.

In order to present this data in a more graphical instead of an algebraic fashion, let me

graph the efficiency factor. I will choose to graph it using the dB scale to represent the ratio

of energies (energy actually emitted over energy expected to be emitted based on velocity

near the vibrating body), and will use pitch to represent the frequencies.

Remember that each 10 dB change (on the ′y′ axis) represents a factor of 10 change in

the efficiency. On the ′x′ axis, each change in pitch by one octave represents a change by a

factor of 2 in frequency, and a also a factor of two change in wavelength. (If the frequency

goes up by a factor of 2, the wavelength shortens by a factor of 2). On this scale, we note

that the function
(

D
λ

)2

is such that as the wavelength increases by a factor of 2 ( and the

frequency decreases by an octave), the efficiency goes down by a factor of 22 = 4. Looking

on the relative dB scale, we note that a factor of 4 corresponds to approximately 6 dB. Thus

each time the frequency changes by an octave, the efficiency changes by 6 dB. This produces

a graph in which the efficiency rises by 6dB for each octave rise in frequency, as long as the

frequency is low enough.

For high frequencies, the efficiency is unity. Since a ratio of unity corresponds to 0 dB,

the plot of the efficiency on this graph can be obtained as follows. Calculate the frequency

at which half the wavelength equals the diameter. Call this the ”knee” frequency. For

frequencies larger than this knee frequency, plot a horizontal line along the 0 dB line. For

frequencies less than this knee frequency, plot a straight line which falls 6dB for every octave

and goes to 0 dB at the knee frequency. Use this as the approximation to the efficiency for

the sound source with diameter corresponding to half the wavelength at the knee frequency.

I have done this for a particular example of a sound source a plane diaphragm of

diameter 19.3 cm. First we need to calculate the knee frequency. This corresponds
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to a wavelength equal to twice the diameter, or 38.7cm. This wavelength correspond-

ing to the knee frequency of is 340m/sec
.192m

= 880Hz. For frequencies higher than 880 Hz

(ie, A880), the efficiency line is a horizontal line at 0dB. For lower frequencies, the line

must fall by 6dB per octave. We therefor go down one octave from 880Hz, to 440Hz

(or the 3rd A along the pitch axis). Plot a point at this frequency and at -6 dB.

Draw a straight line from the 880Hz-0dB point through this 440Hz -6dB point. We

thus get the plot in figure 1 for the efficiency for this particular vibrating diaphragm.
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1. Radiation from one side 

If we now want to discover with what efficiency this diaphragm will radiate at some

frequency, say 200Hz, we simply read off the graph what the efficiency corresponds to

at 200Hz. In this case it is approximately -12.5dB. Only a fraction of about 1/18 th
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(12.5dB=10dB+2.5dB which corresponds roughly to a factor of 10×1.8) of the sound energy

of vibration of the air at the diaphragm will actually escape as sound.

It is of course clear that this graph is an approximation. No physical function ever has

sharp corners as this one does at the knee frequency. The true efficiency curve would be a

smooth curve, with no sharp corners. The dotted line represents one possible actual curve.

For a speaker in an infinite flat wall, the curve in addition has wiggles around the knee

frequency. In the next figure 1a is plotted the actual efficiency as a function of frequency

for a flat circular piston in an infinite flat wall. Note that the actual knee frequency is in

fact slightly lower than the approximation we have made. The location of the actual knee

depends on a large number of factors, most important being the shape of the enclosure the

sound source is in. However, we will not worry about this in this course.
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Note that there are also wiggles in the efficiency for frequencies above the knee. On a

dB scale these wiggles are audibly negligible, since they are less than 1dB in amplitude.

These wiggles come about because of interference from the various parts of the speaker in
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directions off the straight ahead direction.

Note that sharp edges on a speaker also tend to produce wiggles in the response at

frequencies where the size of the box is roughly half a wavelength in size.

If both sides of the speaker are open to the air, so that the sound from the back can get

to the listener, as well as sound from the front, then instead of a 6dB per octave curve for

frequencies below the ”knee” frequency, the efficiency falls at 12dB/octave instead. Ie, since

the efficiency goes as
(

D
λ

)4

, if λ increases by a factor of 2, the efficiency drops be a factor

of 24 = 16. But 16=1.6×10 which is 2 dB (for the factor of 1/6) plus 10dB (for the factor

of 10) to give 12dB. Ie, the curve should be drawn so that it rises by 12 dB every time the

pitch changes by an octave, as in figure 2.
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2. Radiation from two sides 

If we have a system like a tuning fork, where there are two vibrating elements both of

which vibrate in opposite directions to each other, then the curve slopes as 18 dB per octave

below the knee frequency. (26 = 64 = 6.4× 10 → 8dB + 10dB = 18dB) This is plotted in
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figure 3. Note that in order to get most of the curve onto the plot, I have vastly expanded

the range of the dB axis. Instead of going from -30dB to 10dB, it here goes from -120 dB

to 10 dB. Of course again in this case the true curve will be smoother than this one with

its drastic kink, and there will be oscillations in the curve around the knee frequency. But

again these are matters for more detailed study, not for this course where we are trying to

simply get a feel for what is happening. (If you want more details, the course which meets

in our lecture room immediately before ours is one in which the details of acoustics are

calculated mathematically.) Even without straight line approximations, we could improve

things by calculating three ”knee” frequencies- one for the size of the ”piston” (D), one for

the distance around from the back to the front of the piston (W ), and one for the separation

of the two radiating surfaces (L) at each ”knee” frequency, the line changes in its slope,

from 18dB per octave, to 12dB per octave, to 6dB per octave, to the high frequency (small

wavelength) region above all the knees of 0dB. (see figure 4). Again it just isn’t worth it.
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3. Radiation from four sides 
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II. INTERFERENCE

What causes these effects? In particular, why if one can hear both sides of the diaphragm

is the amount of sound radiated at low frequencies so much less than if you can hear only one

side of the piston? The phenomenon is one called interference. Let us examine this situation

in which one has a vibrating diaphragm and for which both sides of the diaphragm can be

heard. For frequencies much less than the ”knee” frequency, each side of the diaphragm

produces sound. However the sound from the back of the piston is 180o out of phase with

the sound produced by the front. Ie, when the front produces a disturbance with the velocity

of the air in one direction, the back produces one with the velocity and pressure in exactly

the opposite direction. If they were immediately combined, they would completely cancel

and produce no sound whatsoever. However, the sound from the back of the diaphragm has

to travel a slightly greater distance than does the sound from the front if the listener is in

front of the diaphragm. As a result when the sounds from the two sides reach the ear, they

are not exactly opposite in pressure and velocity. When the sound from the front reaches

the ear with a maximum velocity in its oscillation, the sound that reaches the ear from the

back must have left the diaphragm slightly earlier than that from the front, in order to make

up for the extra time it took to travel to the ear. As a result the sound front the back is not

exactly at its minimum (most negative ) velocity, and that sound from the back does not

exactly cancel that from the front. The phase difference is not exactly 180o, and the two

waves do not exactly cancel. The longer the wavelength (ie the lower the frequency) the less

of a difference in phase this small difference in travel time makes, and the more nearly the

waves cancel. This near cancellation of the waves from the different parts of the diaphragm

is called interference. The sounds from the two sides of the diaphragm interfere with each

other, and produce far less sound that one would otherwise expect.

Simialry, the sound from various parts of the speaker can interfer with each other. In

figure 5 we have a speaker in the wall ( so sound only comes from one side) and an ear a

distance away from the speaker at various angles to the speaker. We want to look at the
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sound getting to the ear from the two points a and b on the speaker. Sound takes time to

travel from the speaker to the ear. If the ear is straight ahead, the sound from both points

has the same distance to travel.(see figure 6) If the two points on the speaker are vibrating

in phase, the sound that gets to the ear will be in phase, and the two sound waves from

these two parts of the speaker will add together. At point at a smaller angle however the

distance from b is larger than from a. The sound getting to the ear from b will be delayed.

In this example I am assuming that the delay is about 1/4 of a period (ie, the difference in

distances is about 1/4 wavelength). The two waves from teh two points do not completely

add together. and the sound will be less than straight ahead. At the larger angle, the

distance from b is even larger than from a. By assumption it is now 1/2 a period difference

in time of arrival. Now the two sounds are completely out of phase and cancel at the ear.
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at speaker

staight ahead from speaker

at smaller angle from straight ahead

at larger angle from straight ahead.

Clearly one must go through this procedure for each part of the speaker to find out how

much sound actually gets to the ear, and how much the various parts of the speaker cancel

each other out. Clearly, if the speaker is larger in diameter than half a wavelength, then the

17



sound delay from any part will be less than half a period, and the sound does not completely

cancel from any two parts of the speaker.

III. DIRECTIONALITY

One of the key idea that can be picked up from the preceding paragraph is what sound

someone would hear it they were placed away from a vibrating diaphragm but were located

in the same plane as the diaphragm. In this case the distance that the sound has to travel to

them from the two sides of the diaphragm are exactly the same. Since the two sides produce

sound of exactly 180o out of phase with each other, and the time taken to get to the ear

from the two sides is exactly the same, the sounds will cancel at the ear. Ie, there will be no

sound emitted in a direction parallel to the diaphragm. However if the observer sits either

behind or in front of the diaphragm, sound will be heard. Ie, the sound emitted from a

vibrating diaphragm, where both sides radiate freely into the air has directional properties

due to interference of the sound coming from the various parts of the oscillating source.

The same is true for the sound coming from a single side of the diaphragm. If the wave-

length of sound is much smaller than the diameter of the oscillating diaphragm, then even

the sounds emitted by different parts of the diaphragm can interfere with each other. Since

the distance sound travels in one period is by definition one wavelength, if the wavelength

of the sound is less than the diameter of the diaphragm, then the time at which the sound

gets to a listener listening off axis of the diaphragm will differ, and can differ by times which

are equal to or even much greater than one period. This means that the sound which gets

to the ear from the different parts of the diaphragm will have very different phase relations.

Some will cancel, some will add and one has to do detailed calculations. The results are

that if the wavelength is of the order of or much less than the diameter of the source, then

the sound coming off is highly directional. Almost all of the sound comes off in the straight

forward direction. In fact roughly, the angle into which most of the sound is radiated is of

the order of 50o λ
D

. The larger the diaphragm with respect to the wavelength, the narrow
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this angle is, and the more directional the sound is that comes off the diaphragm. This can

of course be useful at times, but demonstrates that if one wants the sound to only go into

a certain direction one needs a very large radiating size.

In figure 7 I have plotted the ”dipole” response pattern of a system which radiates

from two sides, and at a frequency much lower than the knee frequency. This plot is

a polar plot. It plots the relative intensity of the sound emitted in various directions.

Note that the sound is a maximum in the zero degree and 180 degree directions, and

goes to zero, as argued, in the directions perpendicular to the motion of the speaker.
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5. Radiation direction for dipole radiator.

The amount of energy going into certain directions is usually graphed on a type of graph

called a polar diagram. This is not a graph with axes in the usual sense. Instead, one is

trying to represent how much sound is radiated into a certain direction. To do this, one
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chooses an origin (some point) and from that origin draws straight lines going outwards

from that point in the various directions one is interested in. Then along the line going in a

particular direction of interest, one measure a distance along that line from the central point

corresponding to the magnitude of the energy one wishes to represent on the graph, and puts

a point there. Doing this for all of the directions, and then joining up the points smoothly,

one gets the polar diagram. Figure 8 is one such example. These graphs are almost always

relative graphs. Ie, one does not plot the absolute energy going in any particular direction

but picks some direction (eg straight ahead) as the fiducial direction, and calls the amount

radiated in that direction 1. Ie all of the energies are measured as ratios with the energy

going straight ahead in the denominator.

21



Radiation Distributions

Radiation from Piston in Wall

Vel. sound 

2 Diameter
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So let us look at figure 8. In the straight ahead direction (0o), the distance along the line

going straight ahead is of magnitude 1. Along the 45o direction reading along the radius

there, the magnitude is .5, which means only half as much energy gets radiated in the 45o
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direction as in the forward direction. In the 90o direction, the magnitude is zero, meaning

that no radiation is emitted in that direction. In the 180o direction, the magnitude is again 1,

meaning that just as much radiation is emitted in the backwards direction as in the forwards,

etc. Note that this graph is in fact the graph of the radiation direction for a diaphragm in

which both sides are radiating at frequencies much less than the ”knee” frequency ( wave

length much larger than the diameter of the radiator). This pattern of radiation is known

as the ”dipole” pattern. It is also the pattern of radiation from a violin at frequencies above

about A440 to about 1kHz.

We can now look at the pattern of radiation from a single diaphragm mounted in a wall,

say. Obviously in this case the energy is only radiated in the forward direction, since the

observer cannot be located inside the wall. At low frequencies, the radiation is emitted

almost equally in all directions. As the frequency rises the direction of the radiation emitted

becomes more and more focused. In Figure 6 I have plotted the directionality of the radiation

for three frequencies– half the knee frequency in which case the radiation is essentially

isotropic, twice the knee frequency, in which case the radiation has begun to be beamed in

the forward direction, and 8 times the knee frequency, in which case the radiation is emitted

in a narrow cone straight ahead.

In Figure 9 I have plotted exactly the same radiation from a simple piston in a wall,

but in this case, I have plotted the intensity in dB rather than in the relative intensity.

Here it is easy to see that the radiation pattern becomes ”lobed” at high frequencies, where

directions of no radiation alternate with directions of some (although by far the most goes

into the lobe pointing straight ahead). These lobes and zeros are caused by the interference

of the radiation from the various parts of the diaphragm interfering with each other, and in

some directions it entirely cancels out, while in other directions it partially cancels, but not

entirely. Note that even the largest lobe is about 18dB below the intensity of the straight

ahead radiation, and thus is scarcely noticeable in the polar intensity plot.
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One point is that the graphs have all been plotted taking the efficiency of the straight

ahead radiation to be unity. Ie, the intensities plotted have been relative intensities. However

in actual fact, the intensity straight ahead rises by a factor of 4 per octave for all frequencies.
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Ie, given that the piston vibrates with the same velocity, the intensity straight ahead would

be 16 times higher for the 2fk than for the fk/2, and another 16 times more intense for the

8fk. Ie, a vibrating piston becomes louder and louder right on axis the higher the frequency,

but falls off more and more rapidly as one goes off axis.
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