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In normal woodwind tone production the nonlinear flow control properties of the reed transfer energy 
among the harmonics of the spectrum, and the favored pla•dng frequency is one for which the air column 
input impedance is high at several harmonics. Above the middle of the second register, woodwinds have 
only one participating impedance peak; yet these notes can be played even without the use of a register 
hole, despite competing possibilities of low register intermode cooperation. Such notes are possible 
bccaus• enhancement of the reed's transconductance ,4 near its own resonance frequency can offset the 
small input impedance Z of the air column so that (ZA -- 1)>0, providing an additional means for 
energy production above cutoff. Spectral levels as a function of blowing pressure, air column impedance, 
and reed characteristics are derived. Experiments on the clarinet show that the player can adjust the reed 
resonance frequency from about 2 to 3 kHz. When the reed frequency is adjusted to match a harmonic 
component of the tone, the amplitude of that component is increased, and the oscillation is heard as 
being stabilized in loudness, pitch, and tone color. 

PACS numbers: 43.75.Ef, 43.25. -- x 

INTRODUCTION 

This paper presents a further development and exten- 
sion of the theory of nonlinear self-sustained musical 
oscillators which was initiated by Benade and Gans • and 
formalized by Worman. 2 In its present form the theory 
can now describe the steady-state oscillation mecha- 
nism and general behavior of all notes of the clarinet. 
Most of the conclusions also apply to other reed instru- 
ments and, with certain modifications, to the brass in- 
struments as well. 

Some of the earliest work which has direct application 
to reed woodwinds is that done by Weber a in about 1830. 
While his work was mainly concerned with metal reeds 
on organ pipes, Weber calculated the natural frequency 
of an air column terminated by a reed. He did not deal 
with the regeneration mechanism required to maintain 
the oscillations, although he observed experimentally 
that certain combinations of reed and air column natural 

frequencies would not sustain an oscillation. About 30 
years later, Helmholtz 4 showed that the regeneration 
mechanism places restrictions on the relative phase of 
the oscillations of the reed and air column which can 

only be satisfied if the playing frequency is either very 
near the natural frequency of the reed or slightly below 
the na•ral frequency of an air column mode. In 1963 
John Backus presented 5 a linear theory of clarinet os- 
cillations which was valid for very small amplitudes 
near the threshold of oscillation. He was able to cal- 

culate the threshold blowing pressure and the oscilla- 
tion frequency at threshold. Of even more importance 
to the present work, Backus also made measurements 
of the flow into the air column as a function of reed tip 
opening and. pressure difference across the reed. AS 
expected, he found that the flow is a nonlinear function 
of both variables, and he determined the form of this 
function. Nederveen extended Backus' theory to the 

a•Current address: Acoustics Department, Gould Inc., Ocean 
Systems l•vision, 18901 Euclid Avenue, Cleveland, OH 44117. 

double reeds and presented measurements which show 
that the flow through double reeds is a different non- 
linear function of the pressure difference and reed 
opening, 6 but he also did not include the effects of the 
nonlinearity in the theory. Fairly recently, still an- 
other small-amplitude linear theory has been pres- 
ented 7 by Wilson and Beavers. None of these theories 
are capable of explaining the amplitude and spectrum 
stability which are present in all musical oscillations. 
This stability can only be explained by including the 
nonlineartries. 

In 1929 Henri Bouasse published" the results of his 
work on wind instruments. Bouasse understood very 
well the role of the reed in maintaining oscillations. 
While he did not develop any new mathematical theories, 
he presented many observations which anticipate the 
nonlinear theory which has recently been developed. 
For example, he stated 6 without explanation the fact 
that 

"the maintenance of the standing wave is faciliated by 
the coincidence of the qth harmonic of the pressure 
spectrum due to the (nonsinusoidal air flow through the 
reed) with the tube mode whose frequency isN =qn (where 
n is the playing frequency). In this case the (flow) be- 
comes very strong and very stable: One recognizes 
that the reed motion will be stabilized for the frequency 

The first attempts to include nonlinear effects in the 
explanation of musical instrument tone production were 
made in 1958 by Benade 9 in a series of reports for C. G. 
Corm LTD. This work was continued by Benade and 
Gans •ø'• and its continued development has led to the 
present work. In a paper •2 delivered to the Acoustical 
Society, Pyle presented a different nonlinear theory of 
brass instrument oscillations whose initial results 

looked promising. Fletcher la has developed a similar 
theory for organ flue pipes which is able to predict both 
the transient and steady-state pressure spectra in good 
agreement with measured spectra. His theory depends 
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upon the fact that the flow into the flue pipe is controlled 
by the velocity of the standing wave at the mouth of the 
pipe. It cannot be applied to the reed instruments whose 
flow is controlled by a pressure operated reed. Quite 
recently Schumacher •4-'6 has developed an integral equa- 
tion theory to predict the steady-state behavior of the 
bowed-string instruments and has extended it to include 
both organ flue pipes and reed instruments. His initial 
results agree with those of other workers, and the 
method shows promise of developing new insights into 
the problem. 

Worman formalized the Benade-Gans theory for those 
reed instruments for which the Bernoulii force on the 

reed tip can be neglected. He was able to solve the cou- 
pled nonlinear algebrai• equations of the theory for a 
single simple case to show the validity of the theory. 
Benade,v,,s has applied the same general method to the 
oscillations of the brasses and the bowed strings as well 
as extending its application in woodwinds. The theory 
has been successful in explaining many aspects of musi- 
cal instrument behavior which had not been explained by 
earlier linear theories. This, and many other results 
of Worman's theory, are presented clearly and with 
very little mathematics in Benade's Fundamentals of 
Musical Acoustics. •9 

Throughout the development outlined so far, all in- 
vestigators have assumed that the natural frequency of 
the reed is sufficiently high above the playing frequency 
that the reed resonance does not play an active role in 
the regeneration process. The possibility of oscillation 
just below the reed frequency has long been recognized 
and Bouasse discussed musical oscillations of this type. 
However, for normal musical oscillations based on an 
air column mode, it has usually been assumed that the 
reed frequency is far above the playing frequency. The 
present work shows that in fact, the reed resonance can 
play a dynamically significant role in maintaining the 
oscillations in the upper registers of reed instruments 
when the reed frequency is adjusted to match the fre- 
quency of a low-order harmonic multiple of the playing 
frequency. 

Along somewhat different lines, Bariaux 2ø is devel- 
oping a method of solution for reed instruments which 
holds only when the reed beats and is rigidly closed for 
a part of the cycle. This is very important in under- 
standing the many instruments whose reed beats at low 
playing levels; among them are the bassoon, the oboe, 
and the clarinet with a French style mouthpiece and 
reed. In addition, the reeds of all instruments beat at 
high playing levels. The theory developed in the present 
work does not hold when the reed beats. The initial re- 

suits Of Bariaux for the beating reed show many sim- 
ilarities with the results presented here for the non- 
beating reed. 

I. THEORY 

The theoretical treatment presented here is similar 
to that developed 2 by Worman; however, a major em- 
phasis is placed on the reed characteristics, which 
played only a peripheral role in the earlier work. In all 
cases the notation is chosen to match that used by Wor- 

man. This paper deals specifically with an idealized 
clarinet-like system, although many of the results apply 
to all reed instruments for which the Bernoulli force on 

the reed tip (due to the air flow through the reed) can be 
neglected. It is reasonable to postpone consideration of 
the Bernoulli force at this time because acceptable musical 
instruments can be made in which the force is negligible, 
although small changes in this force, produced by alter- 
ing the dimensions of the mouthpiece profile, are readily 
perceived by the player and can have considerable musi- 
cal significance. The present formulation does not ac- 
curately describe the double reed instruments because 
their reeds are strongly influenced by the Bernoulli 
force. However it is known that many generalizations 
from the present work do apply to the double reeds. The 
model clarinet system used in the theory is composed of 
a reed mounted at one end of a particular musical air 
column. The reed and air column are both assumed to 

behave as damped linear oscillators which are coupled 
because the mouthpiece pressure provides the driving 
force for the reed motion, while the air flow through the 
reed adds energy to the oscillations in the bore. This 
air flow, and thus, the coupling it provides, is a highly 
nonlinear function of both the pressure difference across 
the reed and the reed tip opening. The reed thus plays 
a dual role in the model. It acts as a linear oscillator 

at the end of the air column driven by the pressure 
variations in the mouthpiece, and it also serves as a 
nonlinear flow control valve which can add energy to the 
oscillation of the air column. 

The assumption that the reed behaves as a linear os- 
cillator introduces the restriction that the reed motion 

must not be so large that the reed beats against the tip 
of the mouthpiece. In practice, for clarinet reeds and 
mouthpiece designs normally used by orchestral players 
in the United States, such beating takes place only at 
high playing levels. If we look a little more closely at 
the motion of a clarinet reed, we find that it may not 
behave as a linear oscillator even when it is not beating. 
Explicit introduction into the theory of the nonlinsarity 
of the reed dynamics, on top of the nonlinear flow con- 
trol characteristic, would vastly complicate the math- 
ematical analysis without making any changes in the 
general behavior of the equations. Various coupling co- 
efficients would be changed, but since the nonlinearity 
in the flow control characteristic of the reed is much 

larger than that in the reed response, these changes 
can be thought of as perturbations. Furthermore, ob- 
servations by Backus of reed opening versus pressure 
difference across the reed show that, at least far below 
its resonance frequency, the reed acts • very much like 
a linear oscillator driven below resonance. For these 
reasons, the reed is treated as a linear oscillator. The 
oscillations of the air column are also assumed to be 
linear, and here the approximation is much easier to 
justify. The only major source of nonlinearfry in the air 
column of musical instruments is turbulence at the sharp 
corners at the edges of tone holes and in the joints of 
the instruments. By carefully rounding these sharp cor- 
ners, the turbulence effects can be minimized so that 
they only become important at high playing levels where 
the other assumptions of the theory also fail. 
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If the reed is assumed to be a damped linear oscillator 
driven by the periodic pressure difference across it, the 
differential equation for the displacement of the reed 
tip, y, is 

where the reed is characterized by its resonance 
•lar frequency w,, half-power bandwidth gr• and 
feetire mass per unit area •,. The pressure difference 
encountered in erossing from the outside to •he inside 
of •he re• is p, and •he negative sign occurs because 
a positive pressure difference tends to dose the reed. 
•lving this equation for the sinusoid• excitation p 
=Ae •at le•s 

O(•) =de • , 

D(w) is the complex reed response coefficient whose 
magirude and phase are d and 6 respectively. 

The air column chosen for the theoretical study is 
similar to tha• of a clarinet. The basic air column 

parameter which enters the theory directly is the bore 
input impedance Zu--the ratio of acoustic pressure-to- 
volume flow at the tip of the mouthpiece where air en- 
ters the air column. The incoming flow divides into 
two parts, one entering the air column and the other 
filling or Ieaving the space occupied by the reed as 
swings back and forth. The pressure which drives the 
flow into each of these regions is the pressure within 
the mouthpiece. An impedance can be defined for each 
of these parts of the flow, and since the pressure asso- 
ciated with each is the same, the Wtal input impedance 
Z of the air column is •he "par•lel" combination of the 
input impedance of the air column Z• and the impedance 
associated with the reed 

I 1 1 

z = z, ' (4) 
T•ie• bore input impedance curves for a note of the 

clarinet are shown in Fig. 1. For simplicity, •1 cal- 
culations in this paper are done on the assumption that 
the input impedance of the bore beyond the tone hole 
cutoff frequency is strictly eelrant and equal to the 
characteristic impedance of the robe. For comparison 
with these eaIeulations, a elarinet-I•e system was built 
which has a very flat impedance beyond cutoff. The 
next section of this paper describes the musically im- 
portant ease in which one or another sm•l impedance 
pe• beyond cutoff can become a significant part of the 
oscillation mechanism if it fMls near the reed reso- 

nance frequency where the reed transconductance is 
quite large. 

The acoustic impedance •soeiated wigh the flow into 
the region behind the reed is found by calculating this 
flow and dividing it into the mouthpiece pressure. The 
required volume flow is just the volume per unit time 
swept out by the reed as it swings back and forth. ff 

(b) 

iooo 2000 3000 
FREQUENCY (Hz) 

FIG. 1. (a) Measured input impedance of B • clarinet playing 
the note written C 4. (b) Same as (a) but enlarged x10 showing 
details of impedance beyond cutoff. 

zo is the width of the reed, x is a coordinate which mea- 
sures position s.long the reed from the reed tip, and 
Y0c) is the reed displacement from its equilibrium po- 
sition at the position x, then the acoustic volume flow 
associated with the reed motion is 

• dY u,=w •- dx , (5) 
where the integration extends over the entire moving 
length of the reed. It is assumed that all points on any 
line perpendicular to the length, are equidistant from 
the facing and move in phase. For sinusoidal excitation, 
this may be written 

Ur=W • dY d¾ (6) 

where S T is an effective reed area and y is the displace- 
meat of the reed tip from equilibrium. Combining Eqs. 
(2) and (6) to find uT, the reed impedance is found to be 

-- -'(02 (,02 p p p•Xrt •- -iwg,) 
u, STay/err - 

= •r [•g,+i(•=_•,)]. (7) 

According to gq. (4), this impedance is in parallel with 
the input impedance of the bore to yield the tot• input 
impedance of the air column. Fibre 2 shows art idealized 
t•ie• air column input impedance curve for a eylin- 
drie• inst•ment such • a clarinet. The dip in the total 
impedance at the reed natural frequency is caused by 
the decreased reed impedance in this frequency range. 
This impedance curve is used in the theoretie• dis- 
cussion. 

We now use Baeku8' expression for the aceuric vol- 
ume flow through the reed aper•re which, rewritten 
in terms of the present notation, is 

u =Bp•/•(y +Hp/a , (8) 

where p is the pressure difference across the reed• H 
is the equilibrium opening of the reed tip, y is the reed 
tip displacement from equilibrium, and B is a dimen- 
sion• constant whose vMue is 0.08 SI units. Backus' 

e•eriments were carried out under nonoscillatory 
conditio• and thus the effects of •he inertia of the air 
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operator equations. 

For a periodic oscillation, each of the variables u, 
p, and y may be expanded in a Fourier series. 

y.cos(ncot + X,)= • p,d.cos(ncot +c), + 6.) ß 
tl=O 

(11c) 

_E 

/ • (f/frl•.OO 1{25 

FIG. 2. Magnitude and phase of air column input impedance 
(Z,•) and minimum impedance for oscillation (1/A,o0. Oscil- 
lation is possible when 1/A >• Z and • = c•. 

mass in the reed opening are neglected. However, be- 
cause the teacrance due to this inertia is much smaller 
than the acoustic resistance implied by Eq. (8) at all 
frequencies of interest, this relation is used without 
correction. 

Equation (8) is expanded in a two-dimensional Taylor 
series about some appropriate values ofp and y, and 
coefficients of like powers of p and y are collected to 
yield 

u= • F'i;Piy ;. (9) 
Next the relationships between pressure and flow of Eq. 
(10), and pressure and reed displacement of Eq. (2), 
are used to eliminate u and y from Eq. (9). The mouth- 
piece pressure is the product of the air flow into the 
air column and the input impedance Z, whose magnitude 
and phase are z and L The mouthpice pressure is the 
difference between the blowing pressure P and the pres- 
sure difference across the reed p. Thus 

(P -p) =Zu =•e'iCu. (10) 

The reed response function D(co), which relates the 
reed displacement to the pressure difference across 
the reed, is defined in Eqs. (2) and (3). It must be re- 
membered that D and Z are defined only for sinusoidal 
excitation, and thus for the musical case where the 
variables contain several harmonically related frequen- 
cy components, Eq.•. (2) and (10) must be considered as 

Here rico is the nth harmonic of the playing angular fre- 

quency co, and the subscript n signifies that the vari- 
able is to be evaluated at the frequency rico. Equations 
(2) and (10) have been used to express u. and y. in terms 
ofp.. Equations (9) and (11) can now be combined to 
yield a single equation for the amplitudes of the Fourier 
components of the pressure difference across the reed. 

P---•.• P"cos(ncot+qS.+•. 
'i•O n=O 

•, ,.f=O mo 

x([ Pndncos(,wt+•n+6nO (12) 
To s•dy the general nature of •he oscillations, it is 
necessary to retain o•y •he first few terms, and thus 
in [his discussion the Fourier series is terminated with 
n: 3. Detailed numeric• c•culations would require 
keeping more terms. In the present treatment, the Tay- 
lor series is terminated with i =j =2. As with all series 
approximations, keeping o•y the first few terms is ex- 
pected •o give an acceptable approximalion o•y a[ 
sm•l excitation ampli•des. In the presen• c•e, how- 
ever, the second order approximation has been found [o 
give at least qualitaHve agreement with e•erimen[ at 
M1 amplitudes for which the reed does not beat •ainst 
the tip of the mouthpiece. 

A[ this point the products i•icated in Eq. (12) are 
e•anded. Because of the linear independence of sines 
and cosines of different frequencies, the resulting equa- 
tion can be divided into a set of coupled no•inear equa- 
tions each of which contains the coefficients of a single- 
frequency sinusoid from Eq. (12). This set of equations 
can be wrRten in •he form which appears below. 

P - Po = GruPo + GosP• + G•p• + Gosp] + Go6 p• 

aoPoP• + a•PoPa + a•pzPa +... 
P• = (cost/zt) -At(d,, 

bøpøPa + btpøPa + bapaPø +" ' (13b) 
= (sin•t/eO_Aa(dt, St) ' 

+ [ sing,z,-Aa(d•, 5,]• '•/a , (13c) 
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p. sin•. =p•C.(d•, 5•){[eos•./z.-A•(d., 5.)] a 

+ [sin•./z. -A2(d., 6.)IS} "/2 . (13d) 

TheAf, Bi, and C s in these equations are to be con- 
sidered as constants whose values depend on the reed 
parameters, the frequency, and the nonoscillatory pres- 
sure component Po, but not on the amplitudes of the os- 
ciliatory components. At higher amplitudes it is nec- 
essary to consider terms beyond the second order in 
the Taylor series expansion. In that case the As, 
and C s contain arbitrary powers of all of the pf. A, and 
A z are actually the real and intaginary parts of the reed 
transductance. 

One notices that one possible solution to Eqs. (13) is 
pi =0, i = 1, 2, 3, .... This nonoscillatory solution is 
possible for any value of the blowing pressure P. As 
Po, the nonoscillatory pressure difference across the 
reed is increased from zero; the orfiy way for an os- 
cillalion to start is for the denominators of both of the 

expressions in Eq. (13b) to be simultaneously zero. It 
is convenient in this discussion to use the magnitude and 
phase of the reed transconductance rather than its real 
and imaginary parts. Thus we define 

A = (A•+AzZ) •n, (14a) 
and 

a =tan'•(A,/A•). (14b) 

The requirements for an oscillation to begin are then 

a = •x, (15a) 
and 

1 - z i A =0. (15b) 

These express the familiar criteria for a linear feed- 
back oscillation. • Reference to Fig. 2 shows that these 
requirements are met in two frequency regions. Os- 
cillation is possible at a frequency slightly less than the 
frequency of a peak in the input impedance, and also at 
a frequency slightly less than that of the reed resonance. 

The reed damping used to calculate A in Fig. 2 is 
somewhat less than that under actual playing condi- 
tions. The damping provided by the lip is large enough 
that ordinarily the curves of Z and 1/4 do not cross 
near •,. Thus the "reed regime" oscillation near the 
reed frequency cannot usually be obtained. However it 
can be produced by placing the teeth directly on the reed 
to minimize damping. All except the very highest notes 
of the clarinet (those above about F•) have their playing 
frequencies near an input impedance peak similar to the 
lower frequency intersection in Fig. 2. 

In addition to the primary means of energy production 
which takes place at the fundamental frequency, it is 
also possible for energy to be added to the system at any 
of the harmonic components of the generated tone. We 
see from Eqs. (13c) and (13d) that the denominators of 
the expressions for the amplitude of/he ,th component 
p,vanish under the same conditions which cause the 
denominators of the expressions for p• to vanish. Thus 
the conditions on z. and A (ned) to maximize the ampli- 
tude of the nth component are the same as the condi- 

tions on z, and A(co) to maximize the energy production 
at the playing frequency co. pn is increased either by 
increasing z,, which can be done by moving an input 
impedance peak nearer to a harmonic of the playing fre- 
quency, or by increasing A(nco), which is done by 
moving the reed resonance frequency nearer to such a 
harmonic. In either case if z, (rico) • 1, then additional 
energy is added to the system at the nth component, and 
the constraint of the additional feedback loop makes 
the regime much more stable in amplitude, frequency, 
and harmonic content. Incidental frequency modulation 
and spurious noise are generally reduced, and the attack 
and decay transients are shortened and stabilized. Of 
course it is quite unlikely that the denominalors of all 
of the expressions of Eqs. (13b), (13c), and (13d) would 
rigorously vanish at the same o• for any value of n. The 
value of Po can be adjusted to "fine tune" the denomina- 
tors of both expressions in Eq. (13b) to zero, but in 
general that same value of Po would not make the de- 
nominators of Eqs. (13c) and (13d) also vanish. All that 
is really required to stabilize a regime of oscillation is 
that the denominator of p,be small when the denomina- 
tor ofp• vanishes. Equations (15a) and (15b) need only 
be approximate equalities. 

This additional means of energy production at the reed 
frequency was not included in Renade's original defi- 
nition of a regime of oscillation. To include this effect, 
the definition should be changed as follows: 

A regime of oscillation is that state of the collective 
motion of a nonlinearly excited oscillatory system in 
which the nonlinearity of the excitation mechanism col- 
laborates with a set of the modes of the entire system 
(including any possible modes of the excitation mech- ' 
anism itself) to maintain a steady oscillation containing 
several harmonically related frequency components, 
each with its own definite amplitude and phase. 

(The wording in this definition has intentionally been 
made general enough to include oscillations in systems 
other than just reed woodwinds.) While the high-fre- 
quency oscillation whose fundamental is near the reed 
frequency is not formally included in this definition, it 
is similar enough in musical quality that it will be called 
the "reed regime". The definition now includes all nor- 
mal musical oscillations of reed instruments, although 
it does not include the so-called multiphonics, most of 
whose components are inharmonically related. 

II. EXPERIMENTS 

A. Determination of the range of the natural frequency 
of the reed 

The player has considerable control over the natural 
frequency of the reed. By tightening and loosening his 
embouchure he can change the playing frequency of notes 
in the clarion register by ñ 0.6% {+ 10 cents) very easily. 
It can be shown that this corresponds to changing the 
natural frequency of the reed about ñ 15% per cent (250 
cents). To find the actual range over which the reed 
frequency can be adjusted, the apparatus shown in the 
block diagram of Fig. 3 was used. The reed frequency 
was approximately determined by measuring the fre- 
quency of the reed regime oscillation while playing with 
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FIG. 3. Block diagram of apparatus used to measure reed fre- 
quency range under playing conditions. 

a normal embouchure. Because the reed Qr under nor- 
mal playing conditions is too small to support a reed 
regime oscillation, the additional feedback through the 
electronic system was provided to allow the oscillation 
to be selfsustaining. 

The operation of this additional feedback loop is as 
follows. A strain gauge mounted on the back of the reed 
is used as one leg in a voltage divider. As the reed 
undergoes its periodic motion, the voltage across the 
strain gauge acquires a small ac component propor- 
tional to the reed curvature at the gauge. This signal 
is amplified and fed to a driver at the lower end of the 
clarinet-like tube. Sound waves from the driver can 

cause the reed to vibrate thus providing the feedback 
necessary to set the system into self-sus,tained oscil- 
lation if the phase shift in the feedback loop is just right. 
The preferred oscillation frequencies are near that of 
the reed resonance and those of the standing wave reso- 
nances of the air column. The air column resonances 

can be heavily damped by placing glass wool in the tube, 
and the additional feedback is reduced at low frequencies 
by band-limiting the amplifier. Thus it is ensured that 
oscillation can only occur near the reed resonance fre- 
quency. 

As mentioned before, with the amplifier turned off the 
system will not oscillate. If the amplifier amplitude 
response is fiat and the phase response is tailored so 
that the phase shift in the feedback loop (including the 
shift due to the wave travel time up the tube) is a multi- 
ple of 2•r tadinns at all frequencies, then turning up the 
amplifier gain would be equivalent to increasing the 
characteristic impedance of the tube. In both cases the 
pressure variation caused by a particular flow through 
the reed would be increased. As this input impedance 
is increased by increasing the amplifier gain, the sys- 
tem eventually goes into oscillation near the reed fre- 
quency where the impedance required for oscillation is 

minimum. 

However, because in this type of oscillation the reed 
is driven near its resonance frequency, its response is 
nearly sinusoidal. Thus the feedback signal contains 
only a single frequency and the amplifier phase compen- 
sation can be considerably simplified. Since the phase 
shift needs to be accurate only at the oscillation fre- 
quency and not at its harmonics, a simple adjustable 
all-pass filter can be used to adjust the phase shift in 
the feedback loop. If the phase is adjusted so that the 
oscillation takes place with minimum gain, then the os- 
cillation again takes place as if the characteristic im- 
pedance of the tube had been increased to the point of 
oscillation. 

By playing with the electronics properly adjusted and 
with a range of embouchure settings essentially similar 
to those used in normal clarinet playing, it is possible 
to set the oscillation frequency anywhere between about 
2 and 3 kHz. With somewhat more extreme changes of 
embouchure, the frequency can be lowered to about 
1800 tIz and raised to about 3400 Hz. It can be shown 

that the reed resonance frequency will always be within 
about 10% of the playing frequency when playing in the 
reed regime. This reed frequency range seems rea- 
sonable in light of the results obtained in other experi- 
ments. Presumably the endpoints of the range would 
change somewhat for different reeds and different mouth- 
piece facing designs. Drastic deviation, however, would 
produce unacceptable playing behavior. 

B. Experiments on a clarinet blowing machine 

The theory of the preceding section predicts that sec- 
ond register oscillations should be stabilized if the reed 

frequency is set near a harmonic of the playing fre- 
quency. This section describes an experiment on a 
clarinet blowing machine which confirms that predic- 
tion. 

The blowing machine used was that designed and built 
by Worman 2 in his earlier work. It consists of a rec- 
tangular cavity in which the mouthpiece is mounted. 
Clarinet-like upper joints can be attached to the out- 
side of the cavity to create a normal musical air col- 
umn. The dimensions of the cylindrical tube connecting 
the mouthpiece and upper joint are typical of clarinet 
barrels. The cavity surrounding the mouthpiece is con- 
nected through a length of •-in. copper tubing to the out- 
let of a reversed vacuum cleaner to provide the blowing 
pressure to the cavity. A brass "tooth", covered with a 
silicone rubber "lip", presses the reed against the 
mouthpiece facing simulating normal blowing conditions. 
The position of the "lip" and the force applied by the 
"tooth" can be varied with adjusting screws. The blowing 
pressure is adjusted by changing the line voltage of the 
vacuum cleaner with a Vatinc. After considerable prac- 
tice it was possible to adjust the blowing pressure, 
"tooth" position, and "lip" force to set the system into 
oscillation at any note on the clarinet. The silicone 
rubber material used as the artificial lip provided sig- 
nificantly less damping than the human lip. Thus the 
reed @, in this experiment is higher than under actual 
playing conditions, and, in fact, is high enough to allow 
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the reed regime to be produced. 

The air column used was one specifically designed to 
have a very fiat impedance beyond the cutoff frequency. 
Since this system does not have a speaker key or reg- 
ister hole like a normal clarinet, it was quite difficult 
to adjust the system to play in the upper register. The 
"tooth" position and "lip" force adjustments were cri- 
tical. Both the low register note and the reed regime 
were much easier to obtain. However, when the adjust- 
ments were properly made the clarion register note 
could be played, and further delicate adjustments brought 
something approximating musical tone to the oscilla- 
tion. With these adjustments made, a little damping 
material such as glass wool, or a handkerchief, was 
placed lightly just outside the first few open tone holes. 
This provided enough damping to lower the bore imped- 
ance peaks below the threshold for oscillation. The 
system would then jump to the reed regime and in all 
cases where the clarion register oscillation had been 
stable the reed regime frequency was within 3% (50 
cents) of the second or third harmonic of the note in the 
clarion register which was played when the embouchure 
was set. For this experiment the clarion register re- 
gime was considered to be stable ff the oscillation re- 
turned to the clarion register note when the damping 
was removed from the outside of the tone holes. The 

actual experimental results appear in Table I. 

Thus, at least on the blowing machine and with an 
instrument whose impedance is fiat beyond cutoff, in 
order to play with the best musical tone, the reed fre- 
quency should be set near a harmonic of the note being 
played and almost precisely at the frequency which 
maximizes energy production near the reed frequency. 
The few cents discrepancy between the harmonic of the 
clarion register note and the playing frequency of the 
reed regime is understood as follows: the clarion re- 
gister plays at the frequency which maximizes the total 
energy production at both the playing frequency and the 
reed frequency, while the reed regime maximizes en- 
ergy input at one frequency only. The additional con- 
straint on the clarion register regime explains the ob- 
served small differences from exact harmonic relation- 

ship of the clarion regime and the reed regime. 

C. Effects of reed resonance on spectrum and tone 
quality 

It has been stated that if the reed frequency is placed 
just above a harmonic of the playing frequency, then 
that harmonic amplitude will be increased. It was also 
shown in the previous section that this setting of the 
reed frequency produces the best musical tone quality 
for clarion register notes on the clarinet. These two 
statements were reaffirmed in the following manner. 
A 3-mm-diam PZT ceramic microphone whose response 
is flat within about +« dB over th• range of frequencies 
considered, was mounted along the side wall of a mouth- 
piece to measure the mouthpiece pressure spectrum. 
By use of the experimental clarinet system with a flat 
impedance beyond cutoff, the mouthpiece pressure sig- 
nal was recorded on a magnetic tape loop and played 
back through a GR 1900-A wave analyzer with its band- 

TABLE I. Results of blowing machine experiment. 

Clarion Reed Component Percentage 
register regime number Cents frequency 

note note matched deviation deviation 

D 4 - 38 ½ A 7 - 20 ½ 6 +15 +1.07 

B•+ 20½ F•+ 65½ 3 +45 +2.68 

Cs+ 30½ C? + 32½ 2 +2 0.12 

C6+ 8½ G7+ 4½ 3 -4 -0.24 

C•+ 20½ G•+ 40½ 3 +20 +1.19 

D•-25½ I•- 10½ 2 +15 +0.89 

Es+ 10½ E?+ 0½ 2 -10 -0.59 

width set at 50 Hz. This is wide enough to span any 
small frequency shifts of any component of interest. 
Each note was recorded and analyzed three times--once 
at/he frequency which gave the best tone quality from 
the musician's point of view, and once each at frequen- 
cies 0.6% (10 cents) sharp and 0.6% (10 cents) flat from 
that producing best quality. This corresponds to a shift 
of the reed's own natural frequency of about +15% (+2- 
• semitones). The spectra typically obtained from the 
recordings are of the sort shown in Fig. 4. These show 
that when the embouchure is adjusted for best tone qual- 
ity the component at the reed frequency is maximized, 
and ms the reed frequency is changed, sometimes the 
next component in the direction of the change is in- 
creased. 

The results of these experiments under actual playing 
conditions can be explained as follows: One observes, 
as indicated in the last section, that the best musical 
quality occurs when the reed frequency matches a har- 
monic of the playing frequency. When this is true, the 
theory predicts that the component at the reed frequency 
is maximized. As the reed frequency is shifted, the 
amplitude of that component which had previously matched 
the reed frequency decreases drastically. If the reed 
frequency is moved far enough that it comes near to 
another component, then this harmonic amplitude in- 
creases for the same reason. Thus the results are con- 

sistent with the conclusions of the last section and agree 
with the predictions of the theory. 

o. • ß REGIME OPTIMIZE{) 

'J -20. 

.• -30 

-40 

I 2 • 4 5 S 

COMPONENT NUMBER 

FIG. 4. Relative amplitude level of first six component, s of the 
played note G 5 played with best musical quality, as well as 10 
cents sharp and 10 cents fiat from this frequency. Reed fre- 
quency range spans the region of the third component. 
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IMPORTANT NOTE 

One should not assume that these spectral changes 
alone are the reason for judging a note to have good 
musical tone quality. To the contrary, there are in- 
dications from practical music that the improvement is 
associated to a greater degree with the fact that when 
the reed frequency matches a harmonic of the playing 
frequency, the oscillalion is stabilized by the increased 
feedback at the reed frequency. The incidental small 
frequency changes and the spurious noise present in the 
tone are thereby decreased. A proper study of such 
matters lies within the field of psychoacoustics rather 
than physics, and so lies outside the scope of the pres- 
ent inquiry. 

D. Musicians' experiments 

Since the recognition of the importance of reed reso- 
nance effects, several attempts have been made by 
Benade to use this information to understand better and 

to improve the playing quality of actual musical instru- 
ments. In all cases these experiments have given qual- 
itative confirmation to the theory developed here. The 
first of these experiments involved placing the proper 
size blob of wax in the bell of a modern conservatory 
oboe. This rearranged the small impedance peaks and 
dips beyond the cutoff frequency in such a way that the 
playing qualities of some of the upper notes, which had 
previously been the worst on the instrument, were 
greatly improved. This occurred because the frequency 
of a small impedance peak beyond cutoff was made to 
be an integer multiple of the playing frequency, when the 
reed resonance frequency was also near such a multi- 
ple. However, for the oboe, the shape of the bell is im- 
portant in determining the properties of the impedance 
below cutoff. Thus the tuning of several of/he notes in 
the low register was affected in ways which would have 
required major surgery to correct. The method was not 
usable for this particular instrument. 

On a different conservatory oboe whose impedance 
peaks are not well aligned at harmonic intervals, Benade 
has found that on most notes there are several distinct 

embouchures which achieve "best" musical tone for this 

instrument. By paying close attention to what he was 
doing with his embouchure, he has been able to find the 
origins of these "best-playing" embouchures. Care must 
be taken in analyzing such experiments, however, be- 
cause changes in the embouchure change not only the 
reed frequency but also the effective volume of the reed 
cavity which for conical instruments will change the 
position and spacing of the impedance peaks. The dif- 
ferent "best-playing" embouchures occur when various 
sets of air column impedance peaks are aligned at har- 
monic intervals with each other or with the reed fre- 

quency. These cases can be distinguished from each 
other in ways such as the following. When the embou- 
chute is adjusted so that the playing frequency of the 
second register note is exactly an octave above the 
playing frequency of the low register note, then the first 
bvo impedance peaks are accurately aligned; this is 
one of the "best-playing" embouchures for the low re- 
gister. Another occurs for the low register note when 

the reed frequency is at an exact harmonic of the second 
impedance peak. This embouchure can be identified be- 
cause it is a "best-playing" embouchure for both the 
first and second registers. Many other examples of this 
type of behavior have been identified and explained. Of 
course an instrument with such multi-optimum behavior 
is not musically useful. The playing behavior of the 
entire instrument can be significantly improved, how- 
ever, if for each note the impedance maxima are pro- 
perly aligned with that embouchure which also placed 
the reed frequency at a harmonic of the playing frequen- 
cy. 

There is an exception to this general rule for the case 
of the Baroque oboe. This oboe has no register key and 
many octave changes are made simply by changing the 
embouchure. In order to accomplish this consistently 
and unambiguously, the embouchures for the two octaves 
must be different, and each must provide its own unique 
set of cooperations to stabilize the oscillation. In order 
to avoid unwanted octave shifts, the first and second 
impedance peaks should not be aligned with each other 
when the embouchure is set for either octave. This 

makes the reed frequency adjustment even more im- 
portant because for many notes it is the only mechanism 
for additional energy input. 

There are two aspects of clarinet behavior which can 
be explained using the ideas presented here. The upper 
register of the clarinet can be played without opening 
the register hole if the reed resonance is always pro- 
perly adjusted at a multiple of the playing frequency. 
This is despite the fact that a low register oscillation 
can also occur and would be vastly favored were it not 
for the extra energy input to the upper register oscil- 
lation by the component near the reed frequency. As a 
second example, consider the very topmost notes on the 
clarinet. The notes above about G• (1400 Hz) are above 
the nominal cuto.ff frequency of the instrument and thus 
the impedance peaks at these frequencies are very 
small. It also turns out that the reed frequency cannot 
be comfortably lowered to place it at the desired play- 
ing frequency to produce a "reed regime." However, 
if the reed frequency is lowered sufficiently, then the 
resonantly enhanced reed transconductance can interact 
with the small impedance peak in the vicinity of cutoff 
to produce an oscillation which is a kind of hybrid of the 
normal and "reed regime" oscillations. 

As a final example of the application of the ideas pres- 
ented in this paper, many of the saxophone mouthpiece 
facing designs prevalent in the 1920's were such that the 
reed frequency could not be raised much above the play- 
ing frequency of notes in the top of the second register. 
The notes written at about D 6 could be achieved as reed 
regimes, but it was not possible to play many notes in 
the third register of the instrument. It was also not 
possible to play the second register without opening 
the register hole, because the reed frequency was too 
low to add energy to the oscillation at a higher com- 
ponent. More recent mouthpiece facing designs have 
allowed the reed frequency to be raised to a range 
analogous to that of the clarinet so that the third reg- 
ister is possible and the second register can be played 
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without the register hole. The design of such facings 
can now be done as a conscious application of the phe- 
nomena discussed in this paper. 

III. CONCLUSIONS 

This paper has extended the work of Worman and Ben- 
ade to show that the nonlinear flow control property of 
the reed, couples the reed resonance into the oscillatory 
energy production mechanism when the reed natural 
frequency is near to a low-order harmonic of the play- 
ing frequency. In this way the reed resonance can serve 
the same function as an input impedance peak in stabi- 
lizing an oscilIation. The mathematics of the two cases 
is somewhat different since the reed resonance affects 

both the input impedance Z and the reed transconductance 
A, whereas an input impedance does not affect A. The 
musical significance of the two cases is, however, so 
similar that it has proven desirable to change the formal 
definition of a regime of oscillation to include those 
cases in which the additional energy input arises from 
a properly adjusted reed resonance. 

Because of the analytical nature of Worman's method 
of solution, a number of simplifications have been made 
to the physical system to allow the major phenomena to 
be studied with a tractable mathematical formulation. 

However, a number of dynamically and musically im- 
portant effects have been neglected which should be in- 
vestigated in future studies. There are three major ef- 
fects in this category. One is the Bernoulli force on the 
reed tip produced by the air flow through the reed. The 
Bernoulli force is very important in the double reeds 
and in single reed instruments whose mouthpiece design 
includes a high baffle at the mouthpiece tip. 

The second is the large amplitude behavior when the 
reed beats against the tip of the mouthpiece. This again 
is especially important for double reeds which often 
beat even at fairly low oscillation amplitude. 

The third phenomena yet to be investigated is the 
transient behavior of reed instruments. The present 
author has recently proposed a time domain method of 
solution which should be able to include all of these ef- 

fects? It is hoped that this solution can be implemented 
in the near future. 
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