
Physics 200-04
Unitary Transformations

Unitary transformation are transformations of the matrices which main-
tain the Hermitean nature of the matrix, and the multiplication and addition
relationship between the operators. They also maintain the eigenvalues of
the matrix.

Consider a general Hermitean matrix A. This matrix has eigenvalues
ai and eigenvectors |A, i〉. We now want to find some transformation of
the matrix A such that the new matrix Ãis Hermitean and has the same
eigenvalues as A does. This new matrix will have eigenvectors |Ã, ai〉. Let us
assume that the transformation is linear– ie the transformation of a sum is
the sum of the transformed vectors. Then we can write the transformation
as

|Ã, ai〉 = U |A, ai〉 (1)

where U is some matrix. Now, we want that a unit vector be taken to a unit
vector. Thus,

〈Ã, ai||Ã, aj〉 = 〈A, ai|U
†U |A, aj〉 (2)

but we want

〈Ã, ai||Ã, aj〉 = 〈A, ai||A, aj〉 (3)

This implies that

U † U = I (4)

In the appendix, I will also argue that the requirement that U leave the
eigenvalues of all Hermitean operators the same gives us in addition that

UU † = I (5)

Furthermore, we know we can write

Ã =
∑

i

ai|Ã, ai〉〈Ã, ai| =
∑

i

aiU |A, ai〉〈A, ai|U
† = UAU † (6)

Thus, in order to presrve the Hermitean character and the eigenvalues of
an arbitrary matrix A, we need that the transformation be of the form UAU †

and that U be Unitary– ie U †U = 1.
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Heisenberg’s dynamic equations should preserve the eigenvalues of the
matrix A since we are simply looking at the same attribute at different times.
Thus, we should have that

A(t) = U(t)A0U
†(t) (7)

Substituting this into the Heisenberg equation, we get

ih̄
dA(t)

dt
= [A(t), H] (8)

can be rewritten, using the product rule of differentiation

ih̄

(

dU

dt
A0U

† + UA0

dU †

dt

)

= AH −HA (9)

or using the fact that U †U = I,

ih̄

(

dU

dt
U †A+ AU

dU †

dt

)

= AH −HA (10)

Since

0 =
dI

dt
=
dUU †

dt
=
dU

dt
U † + U

dU †

dt
(11)

we finally have

ih̄

(

−U
dU †

dt
A+ AU

dU †

dt

)

= AH −HA (12)

This can be solved only if

ih̄U
dU †

dt
= H (13)

or

ih̄
dU †

dt
= U †H (14)

or taking the Hermitean or Dirac adjoint of both sides

−ih̄
dU

dt
= HU (15)
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Ie, we can solve the complete problem if we can solve this ordinary, but
matrix, differential equation.

For our 2x2 matrices, this turns out to be easy to do. If

H = H0 + ~H · ~σ (16)

then the exact solution to the above equation is

U = ei
H0

h̄
t



cos





| ~H|

h̄
t



+ i sin





| ~H|

h̄
t





~H

| ~H|
· σ



 (17)

Schrödinger

There is an alternative way of finding the time dependence. Instead of
having the matrices change with time, one can have the state change with
time.

In the Heisenberg representation, the matrices and in particular their
eigenvectors change in time

|A(t), ai〉 = U(t)|A0, ai〉 (18)

The inner product between the state of the sytem |ψ〉 and any eigenvector,
which determines the probabilities is given by 〈A(t), ai||ψ〉. However, we get
the same amplitude if instead of having the eigenvectors evolve, we have the
state evolve.

〈A(t), ai|, |ψ〉 = (U(t)|A0, ai〉)
†|ψ〉 = 〈A0, ai|U(t)†|ψ〉 (19)

Ie, all of the amplitudes and probabilities remain the same if, instead of
having the operators depend on time,we instead have the state evolve as
U(t)†|ψ〉. We can write this as an equation for |ψ, t〉 by the equation

ih̄
d|ψ, t〉

dt
= ih̄

dU †

dt
|ψ〉 = ih̄

dU(t)†

dt
U(t)U(t)†|ψ〉

= (U †HU)|ψ, t〉 (20)

The term U †HU is the Schrödinger Hamiltonian. If H and U commute,
which they will do if H is independent of time, then the Heisenberg and
Schrödinger hamiltonians are the same.
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This equation is the Schrödinger for for the evolution of the system. In
this case the matrices representing the attributes of the system remain con-
stant, and the state chages with time. Especially for complex systems, this
equation is often more easily solved than are the Heisenberg equations of
motion.

Note that there is no classical analog for these two approaches. In classical
physics, the state, the values which are associated with some attribute of the
system are assumed to change in exactly the same way as do the variables
which represent those attributes. Thus x(t) = Acos(ωt) for a harmonic
oscillator means that the attribute which is the position is a function of time
in the same way as are the values which are actually ascribed to an attribute.

Appendix

We want to prove that if U †U = I and that UAU † has the same eigen-
values as A for all matrices A then we also have UU † = I

One of the Hermitean matrices is the matrix I which has all of its eigen-
values equal to 1. Thus the matrix UIU † must also have all of its eigenvalues
equal to 1 as well. Choosing a set of eigenvectors, |i〉 as the eigenvectors of
UU †, and recalling that any vector |ψ〉 can be written as

|ψ〉 =
∑

i

〈i||ψ〉|i〉 (21)

we see that UU †|ψ〉 = |ψ〉, which is the definition of the identity matrix.
(Note that I have used the fact that the set of all eigenvectors of a Her-

mitean operators is complete in the above. Ie, any vector can always be
written as a linear combination of the eigenvectors. I have not proven this
in this course. You will have to accept it on faith, or wait until it is proven
in your Linear algebra course.)
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