Physics 200-04
Heisenberg Uncertainty Theorem

Having shown that the average value of the values determined for some
observable A in state |¢) is ()| A|Y)) we can define the so called uncertainty
of the observable A is

AA? = (4] (A — (WA ])* [v) (1)

This is just the standard deviation of the probabilistic outcomes for the

determination of A. A N
Let us call the matrix A = A — ([A[¢)]. Then AA® = (¢| ()" [¢)) and
similarly for B. Now consider the matrix

C = (A+i\B) (2)

where ) is some real variable. Both A and B are assumed to be Hermitean
matrices. C' will not be Hermitean. However, for the un-normalized vector

|9) = Clv) (3)

then we know that (¢||¢) = |¢)T|¢) is a real number greater than zero since
it is just the sum of the absolute value squared of each element of the column
vector |¢). Thus

(Cl)Cly) = WICTCly) .
(A% + iAW [iABIY) — (| BA[Y)) + X (| B2|) (4)

. Since this is true for all real values of A it must be true for the value of A
which minimizes this expression. That minimum occurs when

(W] (i(AB - BA)) |¢)
2(0| B2|)

One worry is that the expression for A looks as if it might be imaginary.
But the matrix i(AB — BA) is Hermitean since

0

A

A= — (5)

(iAB - BA)' = —i((AB)' - (BA))
—i(BYA" — A'BY) = i(~BA + AB) = i(AB — BA[6)

1



Thus its eigenvalues are all real, its average value must be real, and A is real.
Substituting this minimum value of lambda in, we get

(W] (i(AB - BA)) |¢)

0 < (Y|A%y) — e (i(AB — BA)) |¥)
(Wl (iAB — BA)) [p)\"
( 2(01B210) ) Wi
o (Wl ((AB - BA) )
= A - -
(6] A%}p) T (7)

Multiplying through by the positive number (¢|B2|¢)) and rearranging, we
have

(| (i(AB — BA)) |1))” (8)

RN

(| A%\ ) (| B?) >
Note that

[AB] = (A—-<A>(B-<B>I)—(B—<B>I)(A-<A>1)
= AB—-A<B>-B<A>+<A><B>1
—(BA-B<A>-A<B>+<A><B>1I)
— AB— BA=[A, B (9)

Thus we have the Heisenberg uncertainty relation
A2~ Lo 2
ANAB? > (il A, Blly) (10)

le, the uncertainty (standard deviation) of A times that of B is always
greater than the square of the expectation value of the commutator of A and
B.

For our finite dimensional system, one consequence of this theorem is that
the expectation value of the commutator in the eigenstate of of one of the
operators of the commutator is always equal to zero. e, if the state |¢) is
an eigenstate of A , then AA is zero, and therefor (¢]i[A, B]|) = 0. Ie, the
commutator must always have both positive and negative eigenvalues (if it
has non-zero eigenvalues).



For an infinite dimensional system (like for the postion matrix or momen-
tum matrix for a free particle) the commutator can be positive (eg, propor-
tional to the identity). In that case, this theorem shows that no eigenvectors
for the operators in the commutator exist, and that the uncertainties of the
operators in the commutator can never be zero.



