
Physics 200-04
Time and Velocity

Time:

As mentioned at the end of the Einstein notes, a clock in a fixed frame,
when measured in a moving frame, runs at a rate given by

δτ =
δt

γ
(1)

where τ is the time in the frame moving with the clock ( the frame in which
the clock is at rest) and δt is time in the frame in which one is moving with
a velocity v with respect to the clock.

This can be written as

∆τ =

√

1 −

(

v

c

)2

∆t (2)

=

√

∆t2 −
1

c2
(~v∆t) · (~v∆t) (3)

=
1

c

√

c2∆t2 − (∆x2 + ∆y2 + ∆z2) (4)

Here ∆x, ..., ∆t are just the changes in x, ..., t produced by the motion of the
clock.

But that factor in the square root looks very much like a distance, or
rather a generalization of a distance, since instead of all plus signs as a dis-
tance would have by Pythagoras’ theorem, it has some positive and some
negative signs. However, if one ignores that point, one could argue that that
expression is a distance, and that then what this expression expresses is that
what the clock in the moving frame is measuring is a form of distance. As
with any distance, this one is invariant under coordinate changes. In partic-
ular, we derived the Lorentz equations precisely under the assumption that
this expression was kept invariant (the same) under the allowed changes in
coordinates. Thus, accepting this as an expression for a kind or distance, a
space-time distance, the Lorentz transformations are precisely those trans-
formations which keep this distance the same.

Note also that we derived the above expression for the time as measured
by the clock under the assumption that the clock was in some fixed frame
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moving with a constant velocity. However, now that we have recognized
that the time on the moving clock is just the distance in the space-time,
we can generalize this and assume that clocks, no matter what their state of
motion– whether in uniform motion or not– always measure just this distance
in space-time.

This distance through which a clock, or any object travels through the
four dimensional space-time is called the proper time of the object. It rep-
resents by calculation in the uniform motion case, and by assumption in the
general case, the time which would be measured by a clock dragged along
with that object. It represents the time attached to the object.

Now the ”twin’s” paradox is completely sensible. Just as the distance
from Vancouver to Toronto depends entirely on the path followed to get there
(eg, via Dallas or via Winnipeg), and not just on the endpoints (Vancouver,
Toronto). Similarly two clocks which follow two different paths through
space-time will measure different distances. Clocks are like odometers– dif-
ferent trips imply different times, no matter that the endpoints of the trip
might be the same.

Addition of velocities:

Since both lengths and times change from frame to frame, it is not sur-
prising that velocities do as well, being just the ratio of distances over times.
Thus consider a particle with constant velocity ~w. The position of that par-
ticle will be ~x = ~x0 + ~wt. Plugging this into the Lorentz transformation for
positions, we get

x′ = γ(x0 + wxt − vt) (5)

t′ = γ(t −
v

c2
(x0 + wxt)) (6)

y′ = y0 + wyt (7)

z′ = z0 + wzt (8)

Using the second equation to express t in terms of t′ so we can figure out the
equation of motion of the particle in the primed system, we get

x′ = x′

0 +
(wx − v)

1 −
vwx

c2

t′ (9)

y′ = y′

0 +
wy

γ
(

1 −
vwx

c2

)t′ (10)
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z′ = z′0 +
wz

γ
(

1 −
vwx

c2

)t′ (11)

where x′

0, y′

0, z′0 are constants (independent of t′) which depend on x0, y0, z0

and v.
Thus the velocities in the primed frame are

w′

x =
(wx − v)

1 −
vwx

c2

(12)

w′

y =
wy

γ
(

1 −
vwx

c2

) (13)

w′

z =
wz

γ
(

1 −
vwx

c2

) (14)

Ie, all three of the velocities in the x, y, z directions change from the one
frame to the moving frame.

The transformation of velocities is rather a mess. We can in fact simplify
it considerably, if instead of the ordinary velocity we define a new (so called
proper) velocity in terms of the derivative with respect to proper time rather
than with respect to derivative with respect to the time in the frame. This
has the huge advantage that the proper time is an invariant. Ie, the proper
time is the same no matter which coordinate system one looks at it.

The proper time for the particle is

dτ =

√

1 −

w2

c2
dt (15)

Thus

dt

dτ
=

1
√

1 −
w2

c2

(16)

The proper velocity, which is the change in a position with respect to proper
time, can therefor be written as

ut =
dt

dτ
=

1
√

1 −
w2

c2

(17)

ux =
dx

dτ
= wx

dt

dτ
= γwwx (18)
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uy =
dy

dτ
= wy

dt

dτ
= γwwy (19)

uz =
dz

dτ
= wz

dt

dτ
= γwwz (20)

(21)

where γw = 1/
√

1 − w2/c2. This definition of velocity is in fact far more
convenient than is the usual definition, because τ does not change depending
on which frame we are in. Therefor if we change frame, ut, ux, uy, uz change
in exactly the same way as t, x, y, z change in a change of frame.

u′t = γv(u
t
−

vux

c2
) (22)

u′x = γv(u
x
− v) (23)

u′y = uy (24)

u′z = uz (25)

and where wi = ui

ut . The ordinary velocities w change in a very complicated
way with a frame transformation, while the proper velocities change purely
via a Lorentz transformation.

One interesting feature of the proper velocities is that they obey the
equation

(ut)2c2
−

(

(ux)2 + (uy)2 + (uz)2
)

= c2 (26)

And they obey this equation in all frames.
If we are interested in something moving at the velocity of light, then

c2∆t2 − ∆x2
− ∆y2

− ∆z2 = 0 (27)

and we cannot define a proper time for this type of particle. In this case,
we can take any parameterization of the path the particle follows to define
the ”proper” velocity. Ie, τ is undefined for this kind of particle, and we can
choose it arbitrarily. Preferably we would choose it so that it is invariant
under Lorentz transformations, but it does not really matter. In any case
the length squared of a light-like proper velocity is zero.
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Thus the proper, rather than the conventional, velocities have a number
of very nice features. They obey the same transformation laws as the coor-
dinates do, they obey a very simple constraint equation, and the velocities
are easily derived from them.

We will find out in the future that it is the proper velocities which give
us the best definition of Energy and momentum as well, rather than the
velocities defined with respect to the frame time.

Aberration of light.

Consider the light coming to the earth from a distant star. If the earth
were at rest (in the frame of the solar system), define the direction to the star
by the angle θ that the light ray coming from the star makes with respect to
direction of the (future)velocity vector of the earth, which we will take to be
the x axis. Then the velocity of the light coming from the star to the earth
will have components

wx = −c cos(θ) (28)

wy = −c sin(θ) (29)

Now assume that the earth is moving with velocity v along the x axis. In
the new frame, the velocity of light is still c. In the new frame

w′

x = −c cos(θ′) =
−c cos(θ) − v
(

1 + c cos(θ)v
c2

) (30)

w′

y = −c sin(θ′) =
−c sin(θ)

γ
(

1 + c cos(θ)v
c2

) (31)

If we look at the expression

sin(θ′)

1 + cos(θ′)
=

1

(1 + v
c
)γ

sin(θ)

1 + cos(θ)
(32)

But 1
(1+ v

c
)γ

=
√

1− v

c

1+ v

c

and

sin(θ′)

1 + cos(θ′)
=

sin(2(θ′/2))

1 + cos(2(θ′/2))
(33)

=
2 sin(θ′/2) cos(θ′/2)

(2 cos2(θ′/2) − 1 + 1)
(34)

= tan(θ′/2) (35)
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Figure 1: The angles defining the aberration of light. The solid angle is the
direction to the star if the earth were at rest, while the light angle is that for
the moving earth (let us say with respect to the center of mass of the solar
system.)

Thus the equation for the aberration of light is

tan(θ′/2) =

√

√

√

√

1 −
v
c

1 + v
c

tan(θ/2) (36)

For small angles looking in the direction in which the body is moving
where tan(θ/2) ≈ θ/2, we have

θ′ ≈

√

√

√

√

1 −
v
c

1 + v
c

θ (37)

In the backward direction, near θ = π, defining φ = π− θ we have tan(π/2−
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φ/2) = cot(φ/2) = 1/ tan(φ/2) , we have

tan(φ′/2) =

√

√

√

√

1 + v
c

1 −
v
c

tan(φ/2) (38)

Which is exactly what one would expect as one can regard the backward
direction as the same as the forward direction but with v replaced with −v.

General boost

In the above we have consistantly just make a boost in the x direction. A
boost in a general direction can be easily written. Assume that the direction
of the velocity vector is ~n– ie, ~v = v~n.

t′ = γ(t −
~v · ~x

c2
) (39)

~n · ~x′ = γ(~n · ~x − vt) (40)

~n × ~x′ = ~n × ~x (41)

or

t = γ(t′ +
~v · ~x′

c2
) (42)

~n · ~x = γ(~n · ~x′ + vt) (43)

~n × ~x = ~n × ~x′ (44)
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