
Physi
s 200-04Periodi
 TableOne of the su

esses of the old quantum theory was an explanation of theperiodi
 table.Bohr, in his original deriviation of the energy levels of the H atom usedjust the 
ir
ular orbits in deriving the energy levelsE = mZ2e48�20h2 1n2 (1)but it was 
lear that the 
lassi
al system had more degrees of freedom thanthat. In parti
ular the 
lassi
al system 
ould have a variety of angular mo-menta for ea
h energy. The ele
tron 
ould 
ir
le the 
entral atom in 
ir
ularand in ellipti
 orbits. (Just as with the planets, the ele
tron would 
ir
le the
entral nu
leus with the nu
leus at one of the fo
i of the ellipse.) Sommer-feld thus postulated that there was a separate quantization 
ondition for ea
hdegree of freedom, whi
h he took to be the radial motion and the angularmotion.Thus we 
an write the three 
onditions asn1h = Z pr _rdtn2h = Z p�r _�dtn3h = Z p�r sin(�) _�dt (2)where pr, p�, and p� are the 
omponents of the ordinary momentumm~v in thedire
tions r; �; �. The terms _r, r _�, and r sin(�) _� the velo
ity of the parti
lein those dire
tions.( The dot over an expression means the time derivative ofthat expression).Now, Z p�r _� + p�r sin(�) _�dt = Z mv2� +mv2�dt: (3)But the term on the right hand side is invariant under a rotation of the wholesystem. Thus, in order to �nd the energy, we 
an always rotate the wholesystem, so that the orbit lies entirely in the x-y plane, and su
h that _~� iszero. 1



Ie, we 
an solve the equations for the orbit in the x-y plane, and thenafterwards rotate ba
k into the frame in whi
h the orbit is in
lined to thex-y plane.For an orbit in the x-y plane only we then have the single quantization
ondition (n2 + n3)h = Z p�r _~�dt (4)where ~� is the angle � in the new rotated 
oordinates.We 
an thus assume that we are looking at the orbit lying in the x-y plane.We 
an now write two quantization 
onditions{ one refering to motion in theangular dire
tion, and one in the radial dire
tion.n1h = Z pr _rdt(n2 + n3)h = Z p~�r _~�dt (5)In this 
ase n1 
an go from 0 (if the orbit is 
ir
ular, and there is no radialmotion). However n2+n3 
an only go from 1, sin
e it makes no sense to thinkabout an orbit with zero angular momentum{ it would go right through the
entral nu
leus.There exists a so 
alled Virial theorem for any power law 
entral potential.The simplest way to see this is to write Newton's law se
ond law asmd2~rdt2 = �~rV (r) (6)where ~r is the gradient of the 
entral for
e potential whi
h depends only onthe distan
e r from the 
enter. Take the dot produ
t of both sides with ~rand average over an orbit, remembering that~rV (r) = dV (r)dr ~rr (7)(ie the for
e only has a 
omponent in the r dire
tion) Thus we haveZ md2~rdt2 � ~rdt = � Z dV (r)dr ~rr � ~rdt (8)2



Now, d2~rdt2 � ~r = ddt  d~rdt � ~r!� d~rdt � d~rdt (9)and thus the left hand side be
omesd~rdt � ~rjT0 � Z T0 mv2dt = � Z rdV (r)dr dt (10)If we take T to be one period, then the �rst term is zero sin
e in the periodi
orbit all the terms repeat themselves after time T . Thus the average value oftwi
e the kineti
 energy equals the average value of r dVdr . If V is a power lawpotential, V = Ar� then r dVdr = �V (r). Thus for any power law potentialthe average kineti
 energy is �2 times the average potential energy. For the
harge or the gravitational 
ase, � = �1, so the average potential energy isminus twi
e the kineti
 energy. Ie, the total energy (potential plus kineti
energy) is the average of minus the kineti
 energy.The total energy is E = KE + PE (11)so for the Coulomb problem,E = KE + PE = KE � 2KE = �KE = �12(m _r2 +mr2 _�2) = �12(pr _r + p� _�)(12)Integrating over one period, we haveET = 12(n1 + n2 + n3)h (13)where T is one period, sin
e the terms on the right are just the sum of thetwo a
tions.We now need to �gure out what T is in terms of the properties of theorbit. It turns out that T depends only on the energyE.To �nd T takes a bit more work. The angular momentum r2 d~�dt is justtwi
e the rate of 
hange of the area of the orbit times the mass. (see �g 1).(The area of the small triangle is 12base x height = 12r d�dt Æt r This means thatthe area of the ellipse , whi
h is �ab4 where a is the length of the major axis3



and b is the minor axis, is twi
e the integral of the angular momentum overthe period. However the equation of motion of the parti
le so thatddt(r2d~�dt = 0 (14)Sin
e the angular momentum is 
onserved, it is the same over time, so wehave p�T = m�ab2 (15)

Figure 1: The de�nition of various quantities for an ellipse. The nu
leus ofthe atom is assumed to be at the left fo
us of the ellipse.Finally, we 
an use the fa
t that the nu
leus is at the fo
us of the ellipse,and we 
an use that, at the 
losest approa
h and furthest approa
h to the4




enter, the radial velo
ity is zero. Sin
e the angular momentum ismr2 _� = p�,we have that _� = p�r2 . At the 
losest approa
h to the sun, we haveE = 12(p� _� � Ze24��0r= 12 p2�mr2 � Ze24��0r (16)Solving this equation for the two values of r (
losest and most distant ap-proa
h), r1 and r2, and adding them to get the semi-major axis, we havea = Ze24��0E (17)or E = Ze24��0a (18)Ie, the total energy depends only on a the major axis of the ellipse.Finally using the fa
t that for an ellipse, the length of the string fromone fo
us to the ellipse and then to the other fo
us is always 
onstant, andis thus equal to a, we �nd that the di�eren
e between the two solutions forr, whi
h is just the distan
e between the two fo
i, is equal to pa2 + b2.r1� r2 = vuut Ze24�0E!2 + 4 p2�2m2E (19)from whi
h we immediately read o� thatb = p�mqE=2 (20)Thus T = �abp� = � Ze24��0E 1qE=2 (21)and ET = Ze24�0qE=2 = (n1 + n2 + n3)h (22)5



Thus the energy depends only on n = n1+n2+n3 and this is the n in Bohr'sformula. Usually n2 + n3 is 
alled l + 1 so that l goes from 0 to n-1.Sin
e the major axis is the same for a given n, for large n but low l, theradial quantum number n1 is large. whi
h means that the orbit has a large
hange in r during the orbit. Ie, the orbit is ellipti
al and the ele
tron spendsmore time near the 
entral 
harge. Be
ause the 
entral 
harge is s
reenedby the other ele
trons when the ele
tron under 
onsideration is far away, theenergy of the high l states for a given n is higher than for low l. (the greaterpositive 
harge seen by the ele
tron whi
h 
omes nearer the nu
leus binds itmore tightly making the energy lower.)It was found experimentally by putting the atom into a magneti
 �eld(Zeeman e�e
t) that ea
h of the states with quanum number l had 2(2l+1)substates. This 
ould be understood if we assume that n3 has values from 0to n2 � 1 = l only, and that for ea
h value ex
ept n3 = 0, the ele
tron 
ouldorbit in two dire
tions{ 
lo
kwise or 
ounter
lo
kwise as seen from above.Ie, for ea
h non-zero value there were 2 states and for zero only 1. However,there seemed to be two extra states for ea
h of the above values. of n1, n2and m = �n3This \explains" the periodi
 table. Using the Pauli ex
lusion prin
iple,one would expe
t to �ll the lower n befor higher, and the lower l before thehigher. Thus, �rst n=1 l=0, then n=2 l=0, then n=2 l=1, then n=3 l=0,n=3 l=1. However, be
ause of their plunging 
loser to the nu
leus the n=3l=2 have a higher energy than the n=4 l=0 and n=4 l=1. Thus the orderessentially is n l1 02 02 13 03 14 04 13 2 (23)5 04 26



5 16 04 35 26 17 15 36 27 2A
tually one of the l=2 ele
trons sneaks in befor the l=3 shell �lls up for thehigher n states.Suddenly one 
ould see reason in the periodi
 table{ reasons why variousof the elements had su
h similar 
hemi
al properties. (eg, C and Si are verysimilar, and this is be
ause they o

ur at the same �lling of an l=2 shell,only in one 
ase with n=2 and the other with n=3.)In the periodi
 table a

ompanying this, the small numbers under theelement name refer to the prin
iple quantum number (the �rst number) thel quantum number (with s meaning l=0, p meaning l=1, d meaning l=2and f meaning l=3. These have histori
al signi�
an
e s=sharp, p=prin
iple,d=di�use)
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