
Physics 200-04
Pauli Spin Matrices

The two dimensional space (ie the space of physical qualities or attributes
which can only have two possible values) is a particularly simply space in
which everything can be solved exactly. Just as in classical mechanics the
harmonic oscillator is the prime example of a physical system, which can
both be solved easily and can be used as an approximation is a wide variety
of situations, the two level system is the same for quantum mechanics. It can
be solved exactly and can by used in a wide wide variety of physical situtions
as a reasonable approximation.

One of the reasons is that the number of operators is very limited. A two
by two matrix only has four complex entries, four complex numbers. If the
matrix is furthermore Hermitean, then the two diagonal entries are real, and
the off diagonal ones are complex conjugates of each other. Ie, a Hermitean
two by two matrix only has four real numbers which characterise it.

Pauli defined a family of two by two Hermitean matrices in terms of which
all others can be characterised. These are the identity matrix

I =
(

1 0
0 1

)

(1)

, and three other matrices

σ1 =
(

0 1
1 0

)

σ2 =
(

0 −i
i 0

)

(2)

σ3 =
(

1 0
0 −1

)

(3)

Any 2x2 Hermitean matrix can be written in terms of these three matrices

A = A0I + A1σ1 + A2σ2 + A3σ3 (4)

where the Ai are real numbers. It is easy to see that this is a Hermitean
matrix, and also that any Hermitean matrix can be written in this way.

For future consideration, let us define

~A · ~σ = A1σ1 + A2σ2 + A3σ3
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Consider A and the two eigenvalues a1 and a2. Then it is straightforward
to show that

a = A0 ±
√

A2
1 + A2

2 + A2
3 (5)

Ie, the eigenvalues depend on on A0 and the “length” of the three dimensional
vector ~A = (A1 A2 A3 ). The eigenvectors are given by

|A,+〉 =
(

cos(θ/2)
eiφ sin(θ/2)

)

|A,−〉 =
(

−e−iφ sin(θ/2)
cos(θ/2)

)

(6)

where the angles are defined by

A1 = | ~A| sin(θ) cos(φ) =
√

A2
1 + A2

2 + A2
3 sin(θ) cos(φ)

A2 = | ~A| sin(θ) sin(φ) (7)

A3 = | ~A| cos(θ) (8)

Ie, they are just the polar angles if we imagine A1, A2, A3 to be the com-
ponents of a spatial vector’s xyz components. (Note that this works only
if

A1∗

A1
=
A2∗

A2
=
A3∗

A3
(9)

—eg if Ai are either all real or all imaginary.)
Proof Using the above definition of the angles, we can write A as

A =

(

A0 + | ~A| cos(θ) | ~A| sin(θ)e−iφ

| ~A| sin(θ)eiφ A0 − | ~A| cos(θ)

)

= A0I + | ~A|
(

cos(θ) sin(θ)e−iφ

sin(θ)eiφ − cos(θ)

)

(10)

where we recall that cos(φ) + i sin(φ) = eiφ.

Assuming that the eigenvector |A,+〉 is
(

α
β

)

the eigenvactor equation is

matrix is

(A0 + | ~A| cos(θ))α + | ~A| sin(θ)e−iφβ = (A0 + | ~A|)α
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(A0 − | ~A| cos(θ))β + | ~A| sin(θ)eiφα = (A0 + | ~A|)β (11)

Solving the second for β

β =
sin(θ)eiφ

(1 + cos(θ)
α (12)

recalling that sin(θ) = 2 sin(θ/2) cos(θ/2) and 1 + cos(θ) = 2 cos2(θ/2) we
have

β = eiφ sin(θ/2)

cos(θ/2)
α (13)

which agrees with my former expression, if I take α = cos(θ/2). Note that
this eigenvector has unit norm.

The solution for the other eigenvector follows just as easily
Consequences

The eigenvector depends on neither A0 the multiple of the identity, nor
| ~A| the length of the other parts of the matrix, but only on the ”direction”
~A

| ~A|
.

The expectation value 〈A,+|σ3|A,+〉 of the larger eigenvalue of A with
the matrix σ3 is

( cos(θ/2) e−iφ sin(θ/2) )
(

1 0
0 −1

)(

cos(θ/2)
eiφ sin(θ/2)

)

= cos2(θ/2) − sin2(θ/2) = cos(θ) =
A3

| ~A|
(14)

With matrix σ1 we get

( cos(θ/2) e−iφ sin(θ/2) )
(

0 1
1 0

)(

cos(θ/2)
eiφ sin(θ/2)

)

= cos(θ/2) sin(θ/2)(eiφ + e−iφ) = sin(θ) cos(φ)

=
A1

| ~A|
(15)

and similarly for σ2

〈A,+|σ2|A,+〉 =
A2

| ~A|
(16)
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Thus, if B = B0I + ~B · ~σ, we get

〈A,+|B|A,+〉 = B0 + ~B ·
~A

| ~A|
(17)

Similarly one can show that

〈A,−|B|A,−〉 = B0 − ~B ·
~A

| ~A|
(18)

Projection

We can define the matrix (in our case a 2x2 matrix) associated with the
eigenvector, say |A,+〉 with

P+ = |A,+〉〈A,+| (19)

Ie it is the product of the eigenvector by its dirac adjoint. This is a column
matrix times a row matris, and produces a 2x2 matrix. Then

P+P+ = |A,+〉〈A,+||A,+〉〈A,+| = |A,+〉(〈A,+||A,+〉)〈A,+|
= (〈A,+||A,+〉)|A,+〉〈A,+| = |A,+〉〈A,+|
= P+ (20)

since by assumption the eigenvectors are always chosen to the normalised.
Any matrix whose square is itself is called a projection operator. Note that
the matrix P+ picks our the |A,+〉 eigenvalue part of a vector. If we have a
general vector

|ψ〉 = α|A,+〉+ β|A,−〉 (21)

then

P+|ψ〉 = α|A,+〉〈A,+||A,+〉+ β|A,+〉〈A,+||A,−〉 = α|A,+〉 (22)

Ie, it “projects out” the part of the vector |ψ〉 which is along the |A,+〉
direction.

We similarly also have the projection operator in the P− = |A,−〉〈A,−|
which is the projection operator onto the negative eigenstate.

The matrix A can be written as

A = a+P+ + a−P− (23)
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ie as teh sum of the projection operators associated with the various eigen-
values times the eigenvalue. This expression clearly has the same eigenvalues
and eigenvectors that A has.

(a+P+ + a−P−)|A,+〉 = a+|A,+〉
(a+P+ + a−P−)|A,−〉 = a+|A,−〉 (24)

Thus

(a+P+ + a−P−)(α|A,+〉+ β|A,−〉) = a+α|A,+〉 + a−β|A,−〉
= A(α|A,+〉 + β|A,−〉) (25)

and the multiplication of any arbitrary vector by the two matrices gives
identical vectors. Ie, the difference between the two matrices must be zero.

Multiplication

The product of the σ matrices are simple

σ2

1 = σ2

2 = σ2

3 = I
σ1σ2 = −σ2σ1 = iσ3

σ2σ3 = −σ3σ2 = iσ1

σ3σ1 = −σ1σ3 = iσ2 (26)

This implies that

(~n · ~σ)(~m · ~σ) = ~n · ~m+ i~n× ~m · ~σ (27)
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